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Abstract

With the development of technology, the volume of the data has gradually become much

larger and attracting much more attention in data science. Statisticians nowadays need to con-

sider the case when the dataset is extremely huge, which can be referred to as ”Big Data Prob-

lem”. In the applications of big data analysis, many problems can be formulated into the family

of convex optimization problem. In my dissertation, I will mainly discuss the algorithm of

alternating direction of multipliers method (ADMM), which is an efficient algorithm in dis-

tributed convex optimization and attracting more and more attention in recent years because of

its superior performance in big data analysis and machine learning. This algorithm is generally

useful in splitting the global problem into subproblems and solving the parallel computing of

those subproblems instead of working on the global problem directly. Generalized LASSO

problem is one of the most commonly used convex optimization problems. In this dissertation,

I will focus on the generalized LASSO problem with equality and inequality constraints. Sev-

eral ADMM and distributed ADMM algorithms will be proposed to solve the problem with

high efficiency and low computational cost.
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Chapter 1

Introduction

1.1 Big Data Problem

With the development of technology, the volume of the data has gradually became much larger

and attracting much more attention in data science. There are 2.5 quintillion bytes of data

created in every single day and around 90 percent of the data on earth are generated in the most

recent two years. For each event that occured in the world, like Nobel Prize, tournament game,

one video uploaded from a Youtuber, there will be millions of comments following those events,

which are too huge to collect. In stock market, the New York Stock Exchange generates about

one terabyte of new trade data per day. In social media, the statistic shows that more than 500

terabytes of new data get ingested into the databases of Facebook every day. It is common in

contemporary society to use airports to travel and attend meetings. However, a single jet engine

can generate 10 terabytes of data in 30 minutes of flight time with many thousand flights per

day which is too enormous to analyze.

Because of the existing real examples, statisticians nowadays always need to consider the

case when the dataset is extremely huge, which can be referred to as “Big Data Problem”.

With the emergence of “Alpha Go” and other AI programs that show suprising achievement

and accomplishment in different areas, big data has gradually become a very hot topic in data

analysis. In order to solve these data analysis problems, the algorithms in machine learning,

deep learning and high dimensional data analysis attracted more attention in statistics and com-

puter science. The big data also arises in different areas in applications, such as pharmaceutical

analysis, gene detecting, biology, economic optimization and so on. Although the applications

are in various areas and with different background, they share some common characteristics
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which people abbreviated as “3v”: big volume, high velocity and large variety. Firstly, the data

usually has extremely large sample size volume, which exceeds a million in most cases. More-

over, the dimension of the dataset is always very high, usually with enormous sample size at

the same time. Furthermore, because of this large sample size and high dimension, the dataset

is usually stored in distributed manners. There are multiple servers and each local server only

stores the local information, such as local parameter, local predictors, local response and so on.

In such cases, it would be helpful if we can solve the big data problem by partitioning the data

into different blocks by dimensions or observations and work on each of the subproblems by

distributed computing to achieve better efficiency and less computational cost.

1.2 Parallel and Distributed Computing

In the past, the information of individuals, such as age, gender, race, income and so on, are

usually collected by area and time so that the data size is moderate to do analysis. However,

with more and more information added to each individual in the contemporary society, a wider

range of data along with time series is needed to have a big picture of those information which

is with enormous contents. From another perspective, vast quantities of individual information

are collected by a broad spectrum of organizations while they are commonly under the premise

of privacy. Disclosures may result in harm to the data’s owner and jeopardize future access to

such sensitive information. This would be a severe problem when the data is extremely large

while some of the information is confidential due to personal privacy, which is referred to as

“privacy preserving problem”. Assume that there are several pharmaceutical companies doing

research on the same medicine for a type of cancer. It would be a great idea to improve the

accuracy and performance of the analysis by the cooperation of those companies. However,

due to privacy of the raw data, no company agree to provide the raw data. Under the scenario,

by using the proposed algorithm, each company will do analysis with their raw data and upload

the result to the central server. The central server will only need to use the uploaded results

instead of the raw data to do statistical analysis and have a good idea of this medicine. This

is also known as meta analysis. However, in meta analysis, the final result will be derived

and there is no more feedback from the government. While the feedback may be needed for
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another iteration in the distributed computing and privacy preserving problem. As another

example, from the nature of data collection, the most common methods used is focus groups.

Focus groups is not merely collecting similar data from many participants at once but a group

discussion on a particular topic organized for research purposes. In this case, the data collected

are blocked by those groups and it would be a tough mission to combine all of them together

since each group may have its own perspective of the topic.These are introductory examples of

privacy preserving problem, which is a hot topic nowadays to be solved. There are also many

other types of privacy perserving problems and all of them can be solved using the proposed

algorithm in this dissertation.

In order to solve these big data problems efficiently, many different algorithms have been

derived to reduce the computational cost. Among all of these algorithms, the idea of parallel

and distributted computing is the one widely used in statistics and engineering. If the big data

can be split along its dimension or sample size to make it into small blocks, statisticians can

solve the subproblems within each block, and collect and aggregate the intermediate result in

each block to generate the global result. In this way, we are able to switch the big data problem

into moderate data problem which is expected to obtain better efficiency and performance. In

addition, if these subproblems can be solved at the same time, in other words, in parallel, the

total computational time of the big data can be reduced to the time of one block of small data,

which statisticians definitely prefer. Furthermore, the big data is usually stored in different

locations and different servers that people cannot do analysis of the whole big data. If the data

in each server can be analyzed locally and only the results are combined by the central server,

the communication would be much cheaper and possible to achieve which is the reason why

parallel and distributed computing needed.

In parallel and distributed computing, there are two major problems: communication and

synchronization. If the server transmit uneven or wrong communication links, it will dramat-

ically decrease the efficiency of the computation and make the cost much higher. The other

case is one or some of the clients take much longer than others and will be much slower to

summarize the original dataset in central server which is called the synchronization problem.
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It is easy to imagine that with this problem occuring, the parallel computing will have low ef-

ficiency due to those defected machines. In this way, there are mainly three different scenarios

of general parallel computing. The first scenario is the ideal one that no communication or

synchronization problem occurs and the corresponding method is named embarrassingly paral-

lel first-order methods. A simple example is the consensus ADMM in Combettes and Pesquet

(2008). Moreover, if the communication problem cannot be ignored, the first-order methods

with reduced or decentralized communications will be helpful. For example, Shi et al. (2015)

proposed the exact first-order algorithm to handle this case. Lastly, if both communication and

synchronization problem occured, we need to apply the asynchronous first-order methods with

decentralized communications such as running stochastic gradient methods in parallel without

locks which was proposed in Recht et al. (2011).

In recent years, several programming frameworks of parallel computing arised. MapRe-

duce is one of those famous frameworks which is implemented in Hadoop. Hadoop is the

software which provides two kernel capabilities: a reliable shared storage called Hadoop Dis-

tributed Filesystems (HDFS) and the analysis system by MapReduce. MapReduce works by

breaking the processing into two phases: map and reduce. In each phase, there are key-value

pairs, input, output, map function and reduce function. These functions are chosen by the pro-

grammer at the beginning of the phase. In the map phase, the input is the raw data while the

information pulled out from the raw data is the output. In the reduce phase, the input is the

output of map function and the output is the key value by sorting and grouping the key-value

pairs. Details of MapReduce and Hadoop are discussed in White (2012). Another popular

framework is the Spark. Spark is the cluster computing framework which is used to deal with

the case when the working set of data across multiple parallel operations needs to be reused.

The main abstraction in Spark is resilient distributed dataset (RDD) which represents a read-

only collection of objects partitioned across a set of machines that can be rebuilt if a partition

is lost. Spark is implemented in Scala which is a high-level programming language for Java

VM. Spark is the first system to allow an efficient, general-purpose programming language to

be used interactively to process large datasets on a cluster. Details of Spark and Scala can be

found in Zaharia et al. (2010). The other widely used framework is openMPI which is an open
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source Message Passing Interface (MPI) implementation. OpenMPI can provide a high perfor-

mance, robust, parallel execution environment for a variety of computing environments. It has

two functional units: Open run-time Environment (openRTE), which is used for bootstrapping

operations, and openMPI communication library, which can provide efficient communication

support. The details of openMPI can be found in Graham et al. (2006). In this dissertation, I

applied the openMPI framework to run distributed computing. Notice that it is awkward to im-

plement ADMM in MapReduce, while the programming language C is believed to have higher

efficiency than Java. I would prefer to implement openMPI in C instead of spark in Java VM.

1.3 Model

In the applications of big data analysis, many problems can be formulated into the family of

convex optimization problem. Among all of those problems, LASSO is one of the most popular

problem that is widely used in statistical analysis. The least absolute shrinkage and selection

operator technique, which is usually abbreviated as LASSO, was first introduced and developed

by Tibshirani (1996). This technique is developed from the ordinary least squares estimates to

improve the prediction accuracy which can fit the sparse parameter if such assumption holds,

such as gene detecting problem, financial networks, variable selection, etc. It shrinks some

coefficients of the estimated parameter β in regression and sets others to be 0, which can retain

good features of subset selection and ridge regression as well. The optimization problem can

be written as:

min
β

1

2
‖y −Xβ‖2

2 + λ‖β‖1,

where y is the response vector, X is the design matrix constructed by the value of predictors

in each observation in the sample, λ is called the tuning parameter to modify the weight of

the LASSO term. And there are many fast algorithms for solving the LASSO problem such

as the least angle regression (LARS) algorithm (Efron et al. (2004)) and homotopy method

(Osborne et al. (2000)). With the development of LASSO problem, different penalizations of

the parameter β gradually shows up, such as the fused lasso (Rudin et al. (1992), Tibshirani

5



et al. (2005)), trend filtering (Steidl et al. (2006), Kim et al. (2009)), the graph fused lasso

(Hoefling, 2010) and so on. And in 2011, Tibshirani and Taylor (2011) introduced generalized

LASSO problem:

arg min
β

1

2
‖y −Xβ‖2

2 + λ‖Dβ‖1,

and unified all the similar LASSO problems by specifying the coefficient matrix D.

In this dissertation, I will mainly focus on the generalized LASSO problem with linear

equality and inequality constraints:

min
β

1

2
‖y −Xβ‖2

2 + λ‖Dβ‖1, subject to Cβ ≥ d,Eβ = f, (1.1)

where X ∈ Rn×p is the design matrix with sample size n and dimension p, y ∈ Rn is the

response, β is the parameter needed to be estimated, λ is the tunning parameter of generalized

LASSO term, D gives the specific structure of β to be shrinked, and matrices C, E and vectors

d, f are the coefficients in equality and inequality constraints. The linear constraints arise

in LASSO problem in recent years because the existing demand in real data. For example,

in the annual data on temperature anomalies, temperature appears to increase monotonically

over the time which can be implemented by specifying the matrix C. As another example, the

positive LASSO requires the LASSO coefficients to be nonnegative. Due to these demands, it’s

necessary to add the equality and inequality constraints along the generalized LASSO problem.

There are many good properties of LASSO problem and generalized LASSO problem.

The algorithm applied to this model is the alternating direction method of multipliers (ADMM).

The details of this algorithm will be introduced in the next chapter. Donoho et al. (1995) proved

the near-minimax optimality of soft thresholding which represents the LASSO shrinkage with

orthogonal predictors. It has also been proved that the L1 approach is able to discover the cor-

rect sparse representation of the model under certain conditions in Donoho and Elad (2003),

Donoho and Huo (2001) and Donoho (2006). Meinshausen and Bühlmann (2006) also showed
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that the variable selection with LASSO can be consistent if the model satisfies some good con-

ditions. Tibshirani et al. (2013) proved the uniqueness in LASSO problem and the extension to

generalized LASSO problem is also given in Ali and Tibshirani (2018). Fan and Li (2001) con-

jectured that the oracle properties do not hold for LASSO problem. It has been shown by Zou

(2006) that the oracle property and near-minimax optimality is held in the adaptive LASSO,

in which adaptive weights are used for penalizing different coefficients in the L1 penalty. It is

interesting to consider whether the generalized LASSO could produce an oracle procedure and

its corresponding suffcient and necessary condition but to the best of my knowledge, there is

no paper published so far giving answer to this question.

The algorithm applied to this model is the alternating direction method of multipliers

(ADMM). The details of this algorithm will be introduced in the next chapter.

1.4 Contribution

With the development of ADMM algorithm in big data problem, the application of ADMM

algorithm to the LASSO problem started to show up. There are many applications of ADMM

on different types of LASSO problems. For example, Li et al. (2014) and Salehani et al. (2014)

applied ADMM algorithm on fused LASSO problem and Adaptive LASSO problem. In 2017,

Zhu (2017) applied a revised ADMM algorithm to generalized LASSO problem with the sce-

nario when p > n. However, this paper didn’t consider the case associated with linear con-

straints, which is common in real examples. In a recent paper by Giesen and Laue (2016),

they mentioned the extension of ADMM to solve the convex optimization algorithm with lin-

ear equality and inequality constraints by adding an indicator function to transfer the inequality

constraints to equality constraints. However, the update of primal variables has no explicit so-

lution and need to be solved by some other first-order methods. Similarly, in another recent

paper Gaines et al. (2018), the authors also derived the algorithm for LASSO problem using

ADMM. But that paper only works on the LASSO problem instead of generalized LASSO and

they used the indicator function to combine the inequality and equality constraints, which is

not able to be solved explicitly in some cases either.
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In the dissertation, I will propose five ADMM algorithms to solve generalized LASSO

problem with linear constraints. These ADMM algorithms are designed for different scenarios

of the problem, including extremely large n, enormous p, n and p both large, p > n, and privacy

preserving scenario. The details of these algorithms will be provided in Chapter 3. There are

mainly five contributions of this dissertation: First, the proposed ADMM algorithm can be used

for the generalized LASSO problem with constraints, which unifies all types of penalizations

in LASSO problems. Next, different from Giesen and Laue (2016) and Gaines et al. (2018),

the proposed algorithm can deal with the constraints without using one more layer of iteration

inside of the ADMM algorithm itself. Furthermore, the proposed algorithms can cover all

generalized LASSO problem in different settings of sample size and dimensions. In previous

ADMM paper, the proposed algorithm usually fits well for a single scenario, either with large

sample size n, large dimension p, or the scenario when p > n. With all the five proposed

ADMM algorithms in this dissertation, all the different cases and setting can be covered very

well. In addition, the proposed parallel and distributed ADMM algorithm can achieve much

better performance and lower computational cost compared to existing methods, specifically,

the quadratic programming. For example, when the sample size n is huge, the distributed

ADMM algorithm splitting along n could reduce the time of convergence. When the dimension

p is high, the distributed ADMM algorithm splitting along p can obtain the same performance

with much less computational cost compared with other existing methods. Last but not least, the

proposed distributed ADMM algorithm is helpful to deal with the privacy preserving problem.

This paper is organized as follows. In Chapter 2, we will introduce the basic algorithms

of ADMM and give a brief review of its development. In Chapter 3, we will propose several

ADMM algorithms for generalized LASSO problem with constraints. In Chapter 4, we will

focus on the proof of convergence of the proposed algorithms based on the discussion in Chen

et al. (2016). In Chapter 5, several issues related to the implementation of the proposed al-

gorithms will be discussed in detail. In Chapter 6, some simulations results will be given to

illustrate the performance of proposed algorithms, as well as the comparison of efficiency to

quadratic programming. In Chapter 7, we will conduct the data analysis of two real examples

8



using the proposed algorithms. In Chapter 8, I will summarize my conclusion and dicuss the

future work of my topic and its importance.
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Chapter 2

ADMM

2.1 Notation

ADMM is an algorithm for solving the problems of the following form:

min
x,z

f(x) + g(z), subject to Ax+Bz = c, (2.1)

where x ∈ Rn, z ∈ Rm are the variables, and A ∈ Rp×n, B ∈ Rp×m and c ∈ Rp are

the known coefficients in the equality constraint. Here we assume function f and g are both

convex functions.

In order to solve this convex optimization problem, we first find the augmented Lagrangian

function given below:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖2

2,

where we call y as the dual variable. The optimal value of this problem p∗ is then:

p∗ = inf{f(x) + g(z)|Ax+Bz = c}.

The steps to find the optimal value is updated in alternating way from an initial value:

xk+1 = arg min
x

Lρ(x, z
k, yk),

zk+1 = arg min
z

Lρ(x
k+1, z, yk),

10



yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

It differs from the dual ascent and the method of multipliers because the updates of x and z are

not updated jointly. They are updated based on alternating directions where the ”AD” comes

from in this algorithm. Notice that the x and z cannot be switched easily because they are not

actually symmetric. The update of x is always before the update of z in each iteration which is

the difference from the methods of multipliers.

In real cases, we usually work on a more convenient form which is named scaled form. If

we define the residual r = Ax + Bz − c, then in the augmented Lagrangian function, the last

two terms can be rewritten as:

yT r +
ρ

2
‖r‖2

2

=
ρ

2
‖r +

1

ρ
y‖2

2 −
1

2ρ
‖y‖2

2

=
ρ

2
‖r + u‖2

2 −
ρ

2
‖u‖2

2,

where u = 1
ρ
y is the renewed scaled dual variable. Replacing y by u in the augmented La-

grangian function, we can have the renewed form as:

Lρ(x, z, u) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ u‖2

2 −
ρ

2
‖u‖2

2.

The corresponding ADMM algorithm can be written as:

xk+1 = arg min
x

(f(x) +
ρ

2
‖Ax+Bzk − c+ uk‖2

2),

zk+1 = arg min
z

(g(z) +
ρ

2
‖Axk+1 +Bz − c+ uk‖2

2),

uk+1 = uk + Axk+1 +Bzk+1 − c,

which is the scaled form of ADMM algorithm since it is expressed in terms of the scaled version

of dual variable.
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2.2 Convergence

According to Boyd et al. (2011) and Mota et al. (2011), we will need to make three assumptions

as follows:

Assumption 1. The functions f : Rn → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed,

proper and convex.

Assumption 2. The unaugmented Lagrangian L0 has a saddle point.

Assumption 1 can guarantee that the update of x and z are solvable but may not be unique

(ifA andB are not with full rank). And assumption 2 can be explicitly written in the following:

there exists (x∗, z∗, u∗), that

L0(x∗, z∗, u) ≤ L0(x∗, z∗, u∗) ≤ L0(x, z, u∗)

holds for all x, z and u but not necessarily unique. And according to Mota et al. (2011), we

need the additional assumption:

Assumption 3. Matrices A and B have full column rank.

Assumption 3 is the additional assumption made in Mota et al. (2011). The author pointed

out that without the assumption 3, Boyd et al. (2011) could not come up with the proof of the

claim that {(xk, yk)} has a single limit point (x∗, y∗) which solves the optimization problem,

i.e., the solutions of primal variables are unique.

Under these three assumptions, the ADMM algorithm would guarantee the following

properties:

• Residual convergence. rk → 0 as k →∞.

• Objective convergence. f(xk) + g(zk)→ p∗ as k →∞.

• Dual variable convergence. uk → u∗ as k →∞.

• {(xk, yk)} has a unique limit point (x∗, y∗) which solves (2.1).
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• {yk} has a unique limit point y∗ which solves the dual problem of (2.1).

The details of the proof can be refered to Boyd et al. (2011) and Mota et al. (2011) which

is based on the proof of three inequalities including the sequence of Lyapunov function. After

the inequalities established, the only property left to be proved is the uniqueness of the limit

point which is discussed in Mota et al. (2011) with the additional assumption 3 made in the

paper.

2.3 Stopping Criteria

From Boyd et al. (2011), if we define another residual s as:

sk+1 = ρATB(zk+1 − zk).

An efficient termination criterion of primal residual r and dual residual s can be set as:

‖rk‖2 ≤ εpri,

‖sk‖2 ≤ εdual,

where

εpri =
√
nεabs + εrelmax{‖Axk‖2, ‖Bzk‖2, ‖c‖2},

εdual =
√
pεabs + εrel‖ρATuk‖2,

where εabs is an absolute tolerance and εrel is a relative tolerance that both of them are usually

selected as 10−3 or smaller depending on the application area and scale of variables.

2.4 Literature Review

ADMM is an efficient algorithm in distributed convex optimization and attracts more and more

attraction in recent years because of its superior performance in big data analysis and machine

learning. This algorithm is generally useful in splitting the global problem into subproblems
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and solve the parallel computing of those subproblems instead of the large problem itself. In

this way, this algorithm is viewed as an efficient approach to solve big data analysis with more

applications with it and is widely used in statistics and machine learning now.

The ADMM was first developed by Gabay and Mercier (1975) based on the use of an

Augmented Lagrangian and applied in continuum mechanics. The Augmented Lagrangian and

multipliers was introduced by Hestenes (1969) at the beginning. The related numerical exam-

ples were analyzed by Miele et al. (1971) at the period. Gabay and Mercier (1975) proved the

existence of unique solution (saddle point) to the augmented Lagrangian with dual approach

using the class of perturbations defined in Rockafellar (1973) and Fortin (1975). He also proved

the convergence of the solution of ADMM under some mild conditions on the objective func-

tion and applied the algorithm in several applications such as minimal hypersurfaces problem,

Bingham fluids, Elasto-plastic torsion of a cylindrical bar problem, non-linear dirichlet prob-

lem and so on and compared this proposed method to some other existing methods to show

its efficiency. In the next 10 years after that, there were several papers discussing the applica-

tions and extending proofs of convergence of ADMM. Gabay (1983) discussed many variations

of ADMM and showed the proof of convergence for those variant forms such as multiplier

methods for variational inequalities, the Douglas-Rachford variant of the method of multipliers

which was first introduced by Mercier (1979), the peaceman-Rachford variant of the method

of multipliers and so on. It was further developed later by Bertsekas (2014). He mentioned

that the ADMM for convex programming decomposition is a special case of Douglas-Rachford

splitting which is again a special case of proximal point algorithm that was first introduced by

Rockafellar (1976) and derived a generalized ADMM by specifying the connection between

Douglas-Rachford splitting and the proximal point algorithm. Fukushima (1992) presented a

new decomposition algorithm for solving the separable convex programming problem based

on ADMM. Eckstein and Fukushima (1994) used the ADMM to derive three convex program-

ming decomposition methods including the problems with multiple set constraints, the epi-

graphic projection method for problems with block separable structure and the alternating step

method for monotropic programming. Some other papers mentioned different applications and

variations of ADMM. For example, Fortin and Glowinski (2000) discussed the application on
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boundary-value problems, Glowinski and Le Tallec (1987) proposed the applications on varia-

tional problems, Tseng (1991) worked on the application of ADMM with variational inequality

problem. More details of applications and variations of ADMM can be found in Eckstein and

Fukushima (1994), Chen and Teboulle (1994), and Bioucas-Dias and Figueiredo (2010).

With the development of data analysis, big data has attracted more and more attention in

these years. There are many existing papers discussing the application of ADMM in data anal-

ysis with extremely high dimension or large sample size. Such big data problems are common

in statistical analysis and machine learning which can be solved by ADMM. Yin et al. (2008)

and Goldstein and Osher (2009) introduced the application of ADMM in comprehensive sens-

ing to deal with the Basic Pursuit problem or compressed sensing problem. O’Donoghue et al.

(2013) proposed the algorithm on linear convex optimal control problem relying on ADMM.

Xue et al. (2012) presented an algorithm to find the positive-definite L1-penalized covariance

estimator of sparse large covariance matrices based on ADMM and established its convergence

properties. Bien et al. (2013) proposed the methods based on ADMM to produce the sparse

estimates of parmeter in lasso problem with strong or weak hierarchy constraint by adding a

set of convex constraints to the lasso. Bogdan et al. (2013) introduced a method for sparse

regression and variable selection which is inspired by multiple testing and relied on the idea

of ADMM with canonical model selection procedures. Zhang and Zou (2014) proposed the

constrained loss minimization for estimating high dimensional sparse precision matrices and

introcued a new loss function called D-trace loss to be solved by ADMM.

Boyd et al. (2011) reviewed the existing applications on ADMM and its corresponding

solutions. This paper introduced the derivation of ADMM, its convergence properties and also

showed many numerical examples by applying the distributed ADMM. It introduced the appli-

cation of ADMM on constrained convex optimization problem with both linear and quadratic

programming, the problem with L1-norms like LAD, basis pursuit problem, general L1 reg-

ularized loss minimization problem and several lasso penalty problems, the global variable

consensus optimization problem and sharing problem, the general distributed model fitting in

regression, classification, logistic regression, SVM and additive models, and several nonconvex

problems such as regressor selection and factor model. It also showed many implementations
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to the existing algorithms and ran several numerical examples to show its good performance in

convergence rate and accuracy.

In the recent paper Gaines et al. (2018), the authors showed the algorithm of using ADMM

to solve LASSO optimization problem with equality and inequality constraint and mentioned

the generalized LASSO problem can be converted to the constrained LASSO. However, this

paper only considered the way to add an indicator function to all the constraints together. In the

ADMM algorithm proposed in this dissertation, the indicator function is only used for inequal-

ity constraint and the solution will be simpler. Moreover, Gaines et al. (2018) didn’t consider

the possibility to split the big data along n with parallel computing which could decrease the

computational cost dramatically especially for big data.
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Chapter 3

ADMM Algorithms

In this chapter, I will mainly derive several ADMM algorithms for solving the generalized

LASSO problem with linear constraints in (1.1). Recall that Gaines et al. (2018) formulate

(1.1) in the form of (2.1) by introducing an indicator function for the feasible region determined

by the constraints. However, it is better to formulate (1.1) in the form of the following:

min
x,y,z

f(x) + g(z) + h(y), subject to Ax+Bz + Cy = d, (3.1)

where x ∈ Rn, z ∈ Rm, and y ∈ Rs are variables, f(·), g(·), and h(·) are known convex

functions, and A ∈ Rp×n, B ∈ Rp×m, C ∈ Rp×s, and d ∈ Rp are known matrices or vectors.

3.1 Extended ADMM With Slack Variables

By introducing new variables z = Dβ and slack variable ω = Cβ − d, the problem (1.1) is

equivalent to:

min
β,z,ω

1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβ = z, Cβ − ω − d = 0, Eβ = f, (3.2)

where ΦRq
+

(ω) = 0 if ω ≥ 0 holds componentwise and =∞ otherwise. That is:

Rq
+ = {x ∈ Rq|xi ≥ 0, i = 1, 2, . . . , q},
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where

ΦRp
+

(ω) =


0 ω ∈ Rp

+

∞ otherwise

The constraints can be written as A1β + A2z + A3ω = b, where

A1 =


D

C

E

 , A2 =


−Im

0q

0s

 , A3 =


0m

−Iq

0s

 , b =


0m

d

f

 .

Hence (1.1), or equivalently (3.2), exactly has the form (3.1). By introducing the dual variable

ρ, the augmented Lagrangian function of (3.2) is

Lρ(β, z, ω, U) =
1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω) + ρUT (A1β + A2z + A3ω − b)

+
ρ

2
‖A1β + A2z + A3ω − b‖2

2,

where UT = (uT , vT , wT ) and u ∈ Rm, v ∈ Rq, w ∈ Rs are the (scaled) Lagrangian multipliers

and ρ > 0 is a user-specified constant. Given β(k), z(k), ω(k), and U (k) as the current solution to

(3.2), the updating steps are as follows:

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
‖A1β + A2z

(k) + A3ω
(k) − b+ U (k)‖2

2,

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖A1β

(k+1) + A2z + A3ω
(k) − b+ U (k)‖2

2,

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
ρ

2
‖A1β

(k+1) + A2z
(k+1) + A3ω − b+ U (k)‖2

2,

U (k+1) = U (k) + A1β
(k+1) + A2z

(k+1) + A3ω
(k+1) − b.
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By simplifying the updating steps for each of the variable, we can update the estimates in the

following way:

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
‖Dβ − z(k) + u(k)‖2

2

+
ρ

2
‖Cβ − ω(k) − d+ v(k)‖2

2 +
ρ

2
‖Eβ − f + w(k)‖2

2,

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖Dβ(k+1) − z + u(k)‖2

2,

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
ρ

2
‖Cβ(k+1) − ω − d+ v(k)‖2

2,

u(k+1) =u(k) +Dβ(k+1) − z(k+1),

v(k+1) =v(k) + Cβ(k+1) − ω(k+1) − d,

w(k+1) =w(k) + Eβ(k+1) − f.

All the optimization problems for updating β(k+1), z(k+1), and ω(k+1) have explicit solutions,

which are discussed in details as follows.

The optimization problem for updating β(k+1) is a least squares problem with an L2-

penalty function. Some calculations yield

β(k+1) =[XTX + ρ(DTD + CTC + ETE)]−1{XTy + ρ[DT (z(k) − u(k))

+ CT (ω(k) + d− v(k)) + ET (f − w(k))]}. (3.3)

The calculation of [XTX + ρ(DTD + CTC + ETE)]−1 may be time-consuming when the

dimension p is large. However, because its value remains constant during iterations, we may

compute and cache it in the initialization step to speed up the calculation.

The optimization problem for updating z(k+1) can be solved componentwise. In fact,

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖Dβ(k+1) − z + u(k)‖2

2

= arg min
z

m∑
j=1

{λ|zj|+
ρ

2
(Djβ

(k+1) − zj + u
(k)
j )2},
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where zj and u(k)
j are the jth component of z and u(k), repsectively, and Dj is the jth row of

matrix D. In the last expression, the objective function is separable with respect to z′js, which

can be calculated separately. Hence, we can find the explicit expression of updating steps of z

as

z(k+1) = (1−
λ
ρ

|Dβ(k+1) + u(k)|
)+(Dβ(k+1) + u(k)),

where (x)+ = x if x ≥ 0 and = 0 otherwise.

The optimization problem for updating ω(k+1) has an explicit solution due to the special

structure of function ΦRq
+

(·). Based on the simplified version, it’s not hard to find

ω(k+1) = (Cβ(k+1) − d+ v(k))+,

Hence, starting with an initial value of β(0), z(0), ω(0), and U (0) = (u(0), v(0), w(0)), the

above derived formulas are used to update the solution iteratively until convergence. The

stopping criteria is usually determined by comparing the length of residual vectors to some

thresholds. In this problem, the stopping criteria are:

‖r(k+1)
prim ‖2 ≤ εprim, ‖s(k+1)

dual ‖2 ≤ εdual,

where rprim and sdual are primary and dual residuals, respectively, given by

r
(k+1)
prim = A1β

(k+1) + A2z
(k+1) + A3ω

(k+1) − b =


Dβ(k+1) − z(k+1)

Cβ(k+1) − ω(k+1) − d

Eβ(k+1) − f

 ,
s

(k+1)
dual = ρAT1A3(ω(k) − ω(k+1)) + ρAT1A2(z(k) − z(k+1)) = ρCT (ω(k) − ω(k+1)) + ρDT (z(k) − z(k+1)).
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Notice that εprim and εdual are some user specified positive numbers. A reasonable choice is

given as follows.

εprim =
√
m+ q + sεabs + εrelmax{‖A1β

(k+1)‖2, ‖A2z
(k+1)‖2, ‖A3ω

(k+1)‖2, ‖b‖2},

εdual =
√
pεabs + εrel‖ρAT1U (k+1)‖2

where εabs and εrel are absolute tolerance and relative tolerance, respectively. In practice, it is

common to select both tolerances to be 10−3.

The ADMM algorithm proposed in Gaines et al. (2018) solves (1.1) in a quite different

way. Firstly, it formulates (1.1) in the form of (2.1). Next, both equality and inequality con-

straints are incorporated in the objective function as an indicator function and the resulting

iteration involves solving two optimization problems, namely, a lasso problem and a projection

problem onto an affine space, where both optimization problems have no explicit solutions in

general. In contrast, the proposed iteration above has an explicit expression in every step and

is expected to be faster than the algorithm in Gaines et al. (2018), which is confirmed in the

simulation studies in Chapter 4.

The proposed algorithm solves (1.1) for a fixed value of the tuning parameter λ. In prac-

tice, the value of λ is selected adaptively to data. Usually, we first select a sequence of equally

spaced values of λ1, λ2, . . ., λk in an interval. Use the proposed algorithm solves (1.1) for

λ = λ1 and then solve the problem with the next λ using the estimated value of β solved from

the previous λ as a warm start, that is, the solution at λ = λi is used as the initial value to find

the solution at λ = λi+1.

The proposed algorithm is below:
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Algorithm 1: ADMM algorithm with slack variable
Result: β

initialization; while

‖r(k+1)
prim ‖2 > εprim or ‖s(k+1)

dual ‖2 > εdual

do

β(k+1) =[XTX + ρ(DTD + CTC + ETE)]−1{XTy + ρ[DT (z(k) − u(k))

+ CT (ω(k) + d− v(k)) + ET (f − w(k))]}

z(k+1) =(1−
λ
ρ

|Dβ(k+1) + u(k)|
)+(Dβ(k+1) + u(k))

ω(k+1) =(Cβ(k+1) − d+ v(k))+

u(k+1) =u(k) +Dβ(k+1) − z(k+1)

v(k+1) =v(k) + Cβ(k+1) − ω(k+1) − d

w(k+1) =w(k) + Eβ(k+1) − f

end

3.2 Extended ADMM With Large p

This section derives the revised ADMM algorithm when the dimension p is higher than the

sample size n. In this scenario, the new constraint will be added to the extension expression in

(3.2) in order to simplify the term in the update of β. The main idea is to get rid of calculating

the inverse of p × p matrix XTX , CTC, DTD and ETE when the dimension p is very large

by introducing new constraints and convert the inverse matrix into other approximate term. We

have mentioned in the previous section that the result of the inverse matrix remains constant

during iterations. We may compute and cache it in the initialization step to speed up the cal-

culation. However, when p is much larger than n, the calculation of the inverse matrix in the

update of β will consume much more time since the dimesnions of XTX , DTD, CTC and

ETE are extremely large as p × p. In order to convert the matrix XTX into other format,
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according to Zhu (2017), we first need to get rid of the other 3 matrices CTC, DTD and ETE

in (3.3) and apply the proximal map technique to the update step of β to avoid the calculation

of the matrix XTX .

Recall that in the form of (3.2), there were 3 equality constraints by introducing the slack

variables. According to Zhu (2017), by adding the following new constraint

(M − CTC)
1
2β = s̃,

where matrix M ∈ Rp×p satisfies M � CTC, the form of (3.2) can be converted to the

following

min
β,z,ω

1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβ = z, Cβ − ω − d = 0, Eβ = f, (M − CTC)
1
2β = s̃.

The constraints can be written as A∗1β + A∗2z + A∗3ω = b∗, where

A∗1 =



D

C

E

(M − CTC)
1
2


, A∗2 =



−Im

0q

0s

0s


, A∗3 =



0m

−Iq

0s

0s


, b∗ =



0m

d

f

s̃


.

Hence this new optimization problem has the form of (3.1) as well. By introducing the dual

variable ρ, the augmented Lagrangian function is

Lρ(β, z, ω, U) =
1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω) + ρU∗T (A∗1β + A∗2z + A∗3ω − b∗)

+
ρ

2
‖A∗1β + A∗2z + A∗3ω − b∗‖2

2,

where U∗T = (uT , vT , wT , ũT ) and u ∈ Rm, v ∈ Rq, w ∈ Rs, ũ ∈ Rs are the (scaled)

Lagragian multipliers and ρ > 0 is a user-specified constant. Given β(k), z(k), ω(k), and U∗(k)
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as the current solution to (3.2), the updating steps are as follows:

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
‖A∗1β + A∗2z

(k) + A∗3ω
(k) − b∗ + U∗(k)‖2

2,

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖A∗1β + A∗2z

(k) + A∗3ω
(k) − b∗ + U∗(k)‖2

2,

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
ρ

2
‖A∗1β + A∗2z

(k) + A∗3ω
(k) − b∗ + U∗(k)‖2

2,

U∗(k+1) = U∗(k) + A∗1β
(k+1) + A∗2z

(k+1) + A∗3ω
(k+1) − b∗.

By simplifying the updating steps for each of the variable, we can update the estimates in the

following way:

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
‖Dβ − z(k) + u(k)‖2

2 +
ρ

2
‖Cβ − ω(k) − d+ v(k)‖2

2

+
ρ

2
‖Eβ − f + w(k)‖2

2 +
ρ

2
‖(M − CTC)

1
2β − s̃(k) + ũ(k)‖2

2, (3.4)

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖Dβ(k+1) − z + u(k)‖2

2,

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
ρ

2
‖Cβ(k+1) − ω − d+ v(k)‖2

2,

s̃(k+1) =(M − CTC)
1
2β(k+1) + ũ(k), (3.5)

u(k+1) =u(k) +Dβ(k+1) − z(k+1),

v(k+1) =v(k) + Cβ(k+1) − ω(k+1) − d, (3.6)

w(k+1) =w(k) + Eβ(k+1) − f.

ũ(k+1) =ũ(k) + (M − CTC)
1
2β(k+1) − s̃(k+1). (3.7)

Instead of finding the solution of these optimization problems, we do transformations using the

above equations to derive a new group of optimization equations which has different optimiza-

tion form in the update of β. Firstly, by combining equation (3.5) and equation (3.7),
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ũ(k+1) = 0, (3.8)

s̃(k) = (M − CTC)
1
2β(k). (3.9)

Notice that the newly added dual variable ũ is 0 which can simplify the representation of the

added variable s̃. We apply the results of (3.8) and equation (3.9) to the optimization step of β

in (3.4)

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
(‖Cβ − ω(k) − d+ u(k)‖2

2 + ‖Eβ − f + v(k)‖2
2

+ ‖Dβ − z(k) + w(k)‖2
2 + ‖(M − CTC)

1
2 (β − β(k))‖2

2). (3.10)

After this transformation and simplification, the optimization problem of β no longer has any

term with s̃. In fact, by introducing this transformation, the newly added constraints has nothing

to do with the optimization problems which can be ignored and the optimization problems could

be reduced to the one with only 3 constraints similar to (3.2). However, we introduce this new

constraint in order to get rid of the complicated matrices in the inverse part in equation (3.3).

Since this new matrix M has relationship with CTC, based on the idea in Zhu (2017), we are

trying to do one more transformation using (3.10) to convert the term CTC into some other

term. In fact, from the optimization equation (3.6),

−ω(k) = v(k) − v(k−1) − Cβ(k) + d, (3.11)

which is a new representation of ω. In order to get rid of the term CTC in the update of β, we

are trying to plug in the new equation of ω in its optimization problem and try to simplify the

original form to be one without CTC. In fact, by substituting the result of (3.11) into equation
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(3.10),

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
(‖Eβ − f + v(k)‖2

2 + ‖Dβ − z(k) + w(k)‖2
2

+ (β − β(k))TM(β − β(k)) + 2CT (2v(k) − v(k−1))β),

the term CTC will be no longer in the optimization problem of β. In order to finally convert

the matrix XTX to some other term due to the enormous dimension p, more efforts need to be

paid to deal with the DTD and ETE as well. By adding two more new constraints,

(P −DTD)
1
2β = s̃1,

(Q− ETE)
1
2β = s̃2,

where matrix P ∈ Rp×p satisfies P � DTD, and matrix Q ∈ Rp×p satisfies Q � ETE, the

same transformations could be applied to each constraint to simplify the update of β while

without adding any new variable in the optimization system. In fact, (3.3) becomes

β(k+1) = arg min
β

1

2
‖y −Xβ‖2

2 +
ρ

2
(β − β(k))T (M + P +Q)(β − β(k))

+ ρDT (2u(k) − u(k−1))β + ρCT (2v(k) − v(k−1))β + ρET (2w(k) − w(k−1))β,

after adding all 3 new constraints. In the finalized update of β, there is no term associated with

any of CTC, DTD or ETE. In fact, by solving the optimization problem for updating β which

is a least square problem with an L2-penalty function, the calculus yields

βk+1 =[XTX + ρ(M + P +Q)]−1[XTy + ρ(M + P +Q)βk

− ρDT (2u(k) − u(k−1))− ρCT (2v(k) − v(k−1))− ρET (2w(k) − w(k−1))].

In the inverse part, the matrix M , P , Q are user-specified matrix satisfying the condition in the

constraints. No matter how huge the dimension p is, we could always construct some “good”

matrices to make the inverse easy to calculate. The only matrix left to be simplified is theXTX
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in this case. According to Zhu (2017), if the update of θ is given as follows

θ(k+1) = arg min
θ

(f(θ) + (2α(k) − α(k − 1))TAθ +
ρ

2
(θ − θ(k))TD(θ − θ(k)),

which satisfy D � ATA. By selecting D = δI with δ ≥ ‖A‖2
op, where ‖A‖op denotes the

operator norm of A, the θ-update can be view as a proximal map of f(·)

θ(k+1) = prox(ρδ)−1f{θ(k) − (ρδ)−1AT (2α(k) − α(k−1))},

where

proxΩ(·)(u) = min
v

(Ω(v) +
1

2
‖u− v‖2

2),

for a given function Ω(·). Based on this idea, the update of β can be rewritten as

β(k+1) = arg min
β
{‖y −Xβ‖2

2 + ρAT1 (2α(k) − α(k−1))β +
ρ

2
(β − β(k))TAT2 (β − β(k))},

where

A1 =


D

C

E

 , A2 =


P T

MT

QT

 and α =


u

v

w

 .

Denote f(β) = ‖y −Xβ‖2
2. By introducing δ = ‖A1‖2

op and AT2 = δAT1 , the update step of β

is as follows

β(k+1) = prox(ρδ)−1f{β(k) − (ρδ)−1A1(2α(k) − α(k−1))}

By introducing new constraints, the problem can be converted to the proximal map of a convex

function f(·) which is much easier to calculate than the inverse matrix and the computational

cost could be reduced dramatically when dimension p is extremely large.
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The optimization problem of z, ω and dual variables u, v and w have the same result as

derived in section 3.1 which will be skipped here. Notice that by adding new constraints, the

optimization keep the same except that the update step of β is converted in a different form.

In fact, the stopping criteria is also the same as the previous algorithm since the optimization

problem doesn’t change and we only used a different function to update β.

The finalized extended ADMM algorithm with large p is given below:
Algorithm 2: ADMM algorithm with large p (p > n)

Result: β

initialization; while

‖r(k+1)
prim ‖2 > εprim or ‖s(k+1)

dual ‖2 > εdual

do

β(k+1) = prox(ρδ)−1f{β(k) − (ρδ)−1A1(2α(k) − α(k−1))}

z(k+1) = (1−
λ
ρ

|Dβ(k+1) + u(k)|
)+(Dβ(k+1) + u(k))

ω(k+1) = (Cβ(k+1) − d+ v(k))+

u(k+1) = u(k) +Dβ(k+1) − z(k+1)

v(k+1) = v(k) + Cβ(k+1) − ω(k+1) − d

w(k+1) = w(k) + Eβ(k+1) − f

end
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3.3 Distributed ADMM Splitting Along n

From this section, we will mainly derive several distributed ADMM algorithm for solving (1.1).

It is necessary to introduce some terms regarding distributed computing for ease of presentation.

Assume that the whole system consisted of B processors. Different processor may correspond

to different cores in a single computer, different computers in a cluster, or different nodes in a

supercomputer. Equipped with its own CPU and memory, each processor can process or com-

pute its own share of data independently from the other processors. There exists a protocol

among the processors which allows the processors to communicate with each other. The com-

munication indicates that some data can be exchanged among the processors. It is important

to point out that the data exchanged among the processors are not the original raw data, but

the intermediate results calculated during the computing process instead. Roughly speaking, in

a typical algorithm of distributed computing, each processor independently processes its own

data, intermediate results are then collected and aggregated together to produce a final result.

The final result may be used as an initial value to repeat the above process if necessary.

Assume that the whole data are partitioned into B subsets, where the bth subset {yb, Xb}

is stored in the bth processor. The sample size for the bth subset is nb while the total sample

size is n =
∑B

b=1 nb. Based on these notations, the origianl problem (1.1) can be rewritten as

min
β,z

B∑
b=1

1

2
‖yb −Xbβ‖2

2 + λ‖z‖1, subject to Cβ ≥ d,Eβ = f. (3.12)

Note that the parameter β and the constraints remain the same for all processors. There are

several scenarios where the problem (3.12) is applicable. For example, the whole data are

too large to be saved in one location or the origianl data are collected at different locations

or different time period. Another popular scenario is privacy preserving. Recall the example

introduced in Chapter 1 that several companies want to build a model using all data collected

by them separately. However, none of the companies want to share their raw data with others

due to privacy. The distributed algorithm then becomes a natural choice, which only requires
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the share of intermediate calculation results, but not the original raw data to produce the global

result.

In distributed computing, we will not transfer all subsets {yb, Xb}, b = 1, 2, . . . , B to a

central location, hence the algorithms derived in the previous sections are not applicable. It is

necessary to derive a distributed algorithm to solve (3.12). In this algorithm, each processor

only processes the local data stored in the processor. All processors needs to communicate

with each other to exchange information. Roughly speaking, during each iteration, there are

two major steps which includes a local step and a global step. In a local step, each processor

processes the local raw data to generate the intermediate result, while in the global step, all

results obtained by all processors are aggregated to produce a final update.

Firstly, we rewrite the problem (3.12) as a global consensus problem,

min
β,z,ω

B∑
b=1

1

2
‖yb −Xbβb‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβb = z, Cβb − ω = d, Eβb = f, βb = β, b = 1, 2, . . . , B.

The augmented Lagrangian function is

Lρ(βb, z, ω, β, ub, vb, wb, hb) =
B∑
b=1

1

2
‖yb −Xbβb‖2

2 + λ‖z‖1 + ΦRq
+

(ω)

+
B∑
b=1

{ρubT (Dβb − z) +
ρ

2
‖Dβb − z‖2

2

+ ρvb
T (Cβb − ω − d) +

ρ

2
‖Cβb − ω − d‖2

2

+ ρwb
T (Eβb − f) +

ρ

2
‖Eβb − f‖2

2

+ ρhb
T (βb − β) +

ρ

2
‖βb − β‖2

2}.

In this problem, the local variables include β′bs, U
′
bs where Ub = (ub, vb, wb, βb), which are

unique to each processor, while the global variables include z, ω and β, which are the same

across all processors. In one typical interation, the local variables are updated within each
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processor and then the global variables are updated together and simultaneously across all

processors.

We update the estimators in the order of U (k+1)
b , β(k+1)

b , z(k+1), and ω(k+1). Notice that the

first two variables are local variable and the remaining three variables are global variables. The

detailed calculation formulas are derived in the following.

The variable U (k+1)
b is updated in the bth processor using the same technique as previous

sections.

u
(k+1)
b = u

(k)
b +Dβ

(k+1)
b − z(k+1),

v
(k+1)
b = v

(k)
b + Cβ

(k+1)
b − ω(k+1) − d,

w
(k+1)
b = w

(k)
b + Eβ

(k+1)
b − f,

h
(k+1)
b = h

(k)
b + β

(k+1)
b − β(k+1).

The variable β(k+1)
b is updated in the bth processor.

β
(k+1)
b = arg min

βb

1

2
‖yb −Xbβb‖2

2 +
ρ

2
‖Dβb − z(k) + u

(k)
b ‖

2
2

+
ρ

2
‖Cβb − ω(k) − d+ v

(k)
b ‖

2
2 +

ρ

2
‖Eβb − f + w

(k)
b ‖

2
2

+
ρ

2
‖βb − β(k) + h

(k)
b ‖

2
2,

which is a quadratic function of βb. The update formula is then given as

β
(k+1)
b =[XT

b Xb + ρ(CTC +DTD + ETE + ρIp)]
−1[XT

b yb + ρDT (z(k) − u(k)
b )

+ ρCT (ω(k) + d− v(k)
b ) + ρET (f − w(k)

b ) + ρ(β(k) − h(k)
b )].

Compared with the formula to update β(k+1) in section 3.1, there is an extra penalty term

‖βb − β(k) + h
(k)
b ‖2

2 in the objective function. This penalty tries to drive β(k+1)
b closer to β(k)

and hence make β(k+1)
b computed by different processors get closer to each other.

31



The variable β(k+1) is computed globally for all processors.

β(k+1) = arg min
β

B∑
b=1

ρ

2
‖β(k+1)

b − β + h
(k+1)
b ‖2

2

=
1

B

B∑
b=1

(β
(k+1)
b + h

(k+1)
b ) = β̄(k+1) + h̄(k+1),

where

β̄(k+1) =
1

B

B∑
b=1

β
(k+1)
b , h̄(k) =

1

B

B∑
b=1

h
(k)
b .

It is clear that β(k+1) is essentially an average of all β(k+1)
b computed by different processors.

The variable z(k+1) is updated globally for all processors.

z(k+1) = arg min
z

λ‖z‖1 +
B∑
b=1

ρ

2
‖Dβ(k+1)

b − z + u
(k+1)
b ‖2

2

= (1−
λ
ρB

|Dβ̄(k+1) + ū(k+1)|
)+(Dβ̄(k+1) + ū(k+1)),

where

ū(k) =
1

B

B∑
b=1

u
(k)
b .

It is clear to see that the technique to find the update of z in distributed scenario is based on the

same idea as section 3.1 while the intermediate results are aggregating from local processors.

The variable ω(k+1) is updated globally.

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
B∑
b=1

ρ

2
‖Cβ(k+1)

b − ω − d+ v
(k+1)
b ‖2

2

= (Cβ̄(k+1) − d+ v̄(k+1))+,

32



where

v̄(k) =
1

B

B∑
b=1

v
(k)
b .

We can see that the updating of β(k+1)
b and U

(k+1)
b are computed with each processor

locally, while the updating of β(k+1), z(k+1), and ω(k+1) are computed globally.

The iteration will stop if the primal and dual residuals are small enough. It is important to

point out that we need to consider the primal and dual residuals in different processors together

in distributed algorithm. It means that all processors will stop iteration at the same time. In

other words, one processor will stop the iteration if and only if all processors are converged.

Based on the idea of stopping criteria introduced before, the primal and dual residuals for the

bth processor are given by

rprim,b =



Dβ
(k+1)
b − z(k+1)

Cβ
(k+1)
b − ω(k+1) − d

Eβ
(k+1)
b − f

β
(k+1)
b − β(k+1)


,

sdual,b = ρ[DT (z(k+1) − z(k)) + CT (ω(k+1) − ω(k)) + (β(k+1) − β(k))].

The stopping rule is

√√√√ B∑
b=1

‖r(k+1)
prim,b‖2

2 ≤ εprim,

√√√√ B∑
b=1

‖s(k+1)
dual,b‖2

2 ≤ εdual,
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where

εprim =
√
B(m+ q + s+ p)εabs

+ εrelmax{

√√√√ B∑
b=1

‖A∗1β
(k+1)
b ‖2

2,
√
B‖A2z

(k+1)‖2,
√
B‖A3ω

(k+1)‖2,
√
B‖β(k+1)‖2,

√
B‖b‖2}

=
√
B(m+ q + s+ p)εabs

+ εrelmax{

√√√√ B∑
b=1

‖A∗1β
(k+1)
b ‖2

2,
√
B‖z(k+1)‖2,

√
B‖ω(k+1)‖2,

√
B‖β(k+1)‖2,

√
B‖b‖2},

εdual =
√
Bpεabs + εrel

√√√√ B∑
b=1

‖ρA∗1U
(k+1)
b ‖2

2,

where matrix A2, A3 are as defined before in section 3.1 and

A∗1 =



D

C

E

Ip


.

The finalized algorithm with distributed ADMM splitting along n is as follows:
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Algorithm 3: Distributed ADMM algorithm splitting along n
Result: β

initialization; while

√√√√ B∑
b=1

‖r(k+1)
prim,b‖2

2 > εprim or

√√√√ B∑
b=1

‖s(k+1)
dual,b‖2

2 > εdual

do
For bth processor: (b = 1, 2, . . . , B)

β
(k+1)
b =[XT

b Xb + ρ(CTC +DTD + ETE + ρIp)]
−1[XT

b yb + ρDT (z(k) − u(k)
b )

+ ρCT (ω(k) + d− v(k)
b ) + ρET (f − w(k)

b ) + ρ(β(k) − h(k)
b )]

u
(k+1)
b =u

(k)
b +Dβ

(k+1)
b − z(k+1)

v
(k+1)
b =v

(k)
b + Cβ

(k+1)
b − ω(k+1) − d

w
(k+1)
b =w

(k)
b + Eβ

(k+1)
b − f

h
(k+1)
b =h

(k)
b + β

(k+1)
b − β(k+1)

For all processors:

β(k+1) =
1

B

B∑
b=1

β
(k+1)
b + h

(k+1)
b = β̄(k+1) + h̄(k+1)

z(k+1) = (1−
λ
ρB

|Dβ̄(k+1) + ū(k+1)|
)+(Dβ̄(k+1) + ū(k+1))

ω(k+1) = (Cβ̄(k+1) − d+ v̄(k+1))+

end

3.4 Distributed ADMM Splitting Along p

This section derives another distributed ADMM algorithm for solving (1.1). Assume that the

design matrix are partitioned intoG subsets along its column, such thatX =

[
X1 X2 . . . XG

]
where the gth subset {Xg} is stored in the gth processor. The sample size for gth subset is n,

while the dimension (column) for the gth subset is pg and the total dimension is p =
∑G

g=1 pg.
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We need to do the same partition to the parameter β along its row, and to the matrices C, D

and E along their columns respectively to obtain the subsets {βg}, {Cg}, {Dg}, and {Eg},

g = {1, 2, . . . , G} such that

β =



β1

β2

...

βG


, C =

[
C1 C2 . . . CG

]
, D =

[
D1 D2 . . . DG

]
, E =

[
E1 E2 . . . EG

]
,

where the gth subset of β, C, D and E are stored in the gth processor. Notice that the product

of matrix Xβ, Cβ, Dβ and Eβ can be written into summation of products

Xβ =
G∑
g=1

Xgβg, Cβ =
G∑
g=1

Cgβg, Dβ =
G∑
g=1

Dgβg, Eβ =
G∑
g=1

Egβg.

The original problem (1.1) can be written as

min
βg

1

2
‖y −

G∑
g=1

Xgβg‖2
2 + λ‖Dgβg‖1,

subject to
G∑
g=1

Cgβg ≥ d,
G∑
g=1

Egβg = f, g = 1, 2, . . . , G. (3.13)

Note that only the response y remain the same for all processors. There are several scenarios

where the problem (3.13) is applicable. For example, the whole data are with enormous dimen-

sion to be saved in one location or the original data are collected at different groups or locations

that the explanatory variables are restricted within the group and the groups are mutually ex-

clusive to each other. In other words, each location and group only contains an unique subset

of all predictors respectively and the span of all those subsets will be the whole data. Privacy

preserving along dimension is also an appropriate scenario in this framework.

In distributed computing, we will not transfer all subsets {Xg}, g = 1, 2, . . . , G to a central

location, hence the algorithm derived in section 3.1 is not applicable here either. It is necessary

to derive a distributed algorithm for solving (3.13). In this algorithm, the same protocol of
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the processors as section 3.3 is needed that all processors needs to communicate with each

other to exchange the intermediate result. Roughly speaking, during one iteration, there are

also two major steps, a local step and a global step. In the local step, each processor processes

information from local data, such as Xg, Dg, Cg, Eg and βg, while in the global step, all results

obtained by all processors are aggregated to produce a final update.

Firstly, we rewrite the problem (3.13) as follows.

min
βg

1

2
‖y −

G∑
g=1

Xgβg‖2
2 + λ‖z‖1 + ΦRq

+
(ω),

subject to
G∑
g=1

Dgβg = z,

G∑
g=1

Cgβg − ω = d,

G∑
g=1

Egβg = f, g = 1, 2, . . . , G.

The augmented Lagrangian function is

Lρ(βg, z, ω, β, u, v, w) =
1

2
‖y −

G∑
g=1

Xgβg‖2
2 + λ‖z‖1 + ΦRq

+
(ω)

+ ρuT (
G∑
g=1

Dgβg − z) +
ρ

2
‖

G∑
g=1

Dgβg − z‖2
2

+ ρvT (
G∑
g=1

Cgβg − ω − d) +
ρ

2
‖

G∑
g=1

Cgβg − ω − d‖2
2

+ ρwT (
G∑
g=1

Egβg − f) +
ρ

2
‖

G∑
g=1

Egβg − f‖2
2.

In this distributed problem, the local variable only includes β′gs, which is unique to each pro-

cessor, while the global variables include z, ω, and U where U = (u, v, w), which are the same

across all processors. In one typical iteration, the local variable is updated within each proces-

sor and then the global variables are updated together and simultaneously across all processors.

We update the estimator in the order of β(k+1)
g , z(k+1), ω(k+1), and U (k+1). Notice that

the first variable is local variable and the remaining three variables are global variables. The

detailed calculation formulas are derived in the following.
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The variable β(k+1)
g is updated in the gth processor.

β(k+1)
g = arg min

βg

1

2
‖y −

G∑
g=1

Xgβg‖2
2 +

ρ

2
‖

G∑
g=1

Dgβg − z(k) + u(k)‖2
2

+
ρ

2
‖

G∑
g=1

Cgβg − ω(k) − d+ v(k)‖2
2 +

ρ

2
‖

G∑
g=1

Egβg − f + w(k)‖2
2,

which is a quadratic function of βb. The update formula is then given as

β(k+1)
g =[XT

g Xg + ρ(CT
g Cg +DT

gDg + ET
g Eg)]

−1[XT
g y −XT

g

∑
i 6=g

Xiβ
(k)
i

− ρDT
g (
∑
i 6=g

Diβ
(k)
i − z(k) + u(k))− ρCT

g (
∑
i 6=g

Ciβ
(k)
i − ω(k) − d+ v(k))

− ρET
g (
∑
i 6=g

Eiβ
(k)
i − f + w(k))].

Compared with the formula to update β(k+1) in section 3.1, every product between matrix and

parameter β is partitioned into summation of products within each processor. In the iteration,

all those local products are calculated from the update variable in last iteration and updated

simultaneously at the end of the iteration.

The variable z(k+1) is computed globally for all processors.

z(k+1) = arg min
z

λ‖z‖1 +
ρ

2
‖

G∑
g=1

Dgβ
(k+1)
g − z + u(k)‖2

2

= (1−
λ
ρ

|
∑G

g=1Dgβ
(k+1)
g + u(k)|

)+(
G∑
g=1

Dgβ
(k+1)
g + u(k)).

The update step of z(k+1) is computed based on the idea in Boyd et al. (2011) as well.

The variable ω(k+1) is updated globally for all processors.

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
ρ

2
‖

G∑
g=1

Cgβ
(k+1)
g − ω − d+ v(k)‖2

2

= (
G∑
g=1

Cgβ
(k+1)
g − d+ v(k))+.
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The variable U (k+1) is updated globally for all processors.

u(k+1) = u(k) +
G∑
g=1

Dgβ
(k+1)
g − z(k+1),

v(k+1) = v(k) +
G∑
g=1

Cgβ
(k+1)
g − ω(k+1) − d,

w(k+1) = w(k) +
G∑
g=1

Egβ
(k+1)
g − f.

We can see that the updating of β(k+1)
g is computed within each processor locally, while the

updating of z(k+1), ω(k+1) and U (k+1) are computed globally based on the intermediate results

of β(k+1)
g from all processors simultaneously.

The iteration will stop if the primal and dual residuals are very close to 0. It is important

to point out that we need to consider the primal and dual residuals in different processors

together. In this way, all processors will stop iterations at the same time. However, since the

local processor can only generate one subset of the final update of β, while the residuals have

to be evaluated with the complete parameter β, the stopping rule should be the same as the one

in section 3.1, that is,

‖r(k+1)
prim ‖2 ≤ εprim, ‖s(k+1)

dual ‖2 ≤ εdual,

where rprim and sdual are primary and dual residuals, respectively, given by

r
(k+1)
prim = A1β

(k+1) + A2z
(k+1) + A3ω

(k+1) − b =


Dβ(k+1) − z(k+1)

Cβ(k+1) − ω(k+1) − d

Eβ(k+1) − f

 ,
s

(k+1)
dual = ρAT1A3(ω(k) − ω(k+1)) + ρAT1A2(z(k) − z(k+1)) = ρCT (ω(k) − ω(k+1)) + ρDT (z(k) − z(k+1)),
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where β(k+1) =



β
(k+1)
1

β
(k+1)
2

...

β
(k+1)
g


, and

εprim =
√
m+ q + sεabs + εrelmax{‖A1β

(k+1)‖2, ‖A2z
(k+1)‖2, ‖A3ω

(k+1)‖2, ‖b‖2},

εdual =
√
pεabs + εrel‖ρAT1U (k+1)‖2,

where εabs and εrel are absolute tolerance and relative tolerance.

Notice that if there is a multicollinearity problem, the penalization in the ridge regres-

sion could be added to the global problem to mitigate the its effect. Although in each local

processor, only a subset of β is estimated, by adding the constraint
∑p

i=1 βi = c in the origi-

nal problem, we can control the effect of multicollinearity in local processor as well as across

multiple processors.

As another remark, there will not be a case when the same variables are measured at dif-

ferent locations. As I showed in the proof of convergence in the next chapter, the convergence

could be achieved only if the variables in each local processor are independent to other local

processors. If there are shared variables in several local processors, the sufficient condition

discussed in Chen et al. (2016) will not be held and the convergence may not be achieved.

The finalized algorithm with distributed ADMM splitting along p is as follows:
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Algorithm 4: Distributed ADMM algorithm splitting along p
Result: β

initialization; while

‖r(k+1)
prim ‖2 > εprim or ‖s(k+1)

dual ‖2 > εdual

do
For gth processor: (g = 1, 2, . . . , G)

β(k+1)
g =[XT

g Xg + ρ(CT
g Cg +DT

gDg + ET
g Eg)]

−1[XT
g y −XT

g

∑
i 6=g

Xiβ
(k)
i

− ρDT
g (
∑
i 6=g

Diβ
(k)
i − z(k) + u(k))− ρCT

g (
∑
i 6=g

Ciβ
(k)
i − ω(k) − d+ v(k))

− ρET
g (
∑
i 6=g

Eiβ
(k)
i − f + w(k))]

For all processors:

z(k+1) = (1−
λ
ρ

|
∑G

g=1 Dgβ
(k+1)
g + u(k)|

)+(
G∑
g=1

Dgβ
(k+1)
g + u(k))

ω(k+1) = (
G∑
g=1

Cgβ
(k+1)
g − d+ v(k))+

u(k+1) = u(k) +
G∑
g=1

Dgβ
(k+1)
g − z(k+1)

v(k+1) = v(k) +
G∑
g=1

Cgβ
(k+1)
g − ω(k+1) − d

w(k+1) = w(k) +
G∑
g=1

Egβ
(k+1)
g − f

end

3.5 Distributed ADMM Splitting Along n and p

This section derives another distributed algorithm for solving (1.1). It is important to point

out that in this algorithm, there are two layers of iterations. In the first layer, there are several

clusters of processors. Each processor will independently compute the intermediate result using

the local data and the intermediate numbers are collected and aggregated together to produce
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another intermediate result in each cluster. Then the intermediate result generated in each

cluster will be collected and aggregated together one more time to produce the final global

update. For example, if there are totally B × G number of processors, and the processors are

partitioned into B clusters where each cluster includes G processors. Then in the iteration, at

the beginning, each of the G processors in the 1st block will run simultaneously using the local

data and the intermediate results will be collected and aggregated to produce the final result in

the 1st cluster. Similarly, cluster 2, cluster 3, . . ., cluster B will calculate their corresponding

local results in each processor which will be aggregated as a final result within each cluster.

After this step, each cluster will have only one intermediate result which is the final result

aggregated by theG processors in each cluster. These new intermediate results will be collected

and aggregated again by communication among all clusters to produce the global result.

Assume that the whole data are partitioned into B subsets along rows, and G subsets

along columns, where the gth subset within the bth subset is stored in the gth processor of the

bth cluster of processors. The sample size of the local data in the bth cluster is nb and the total

sample size is n =
∑B

b=1 nb. The dimension for the the gth subset in each cluster is pg and the

total dimension is p =
∑G

g=1 pg. We need to do the same partition to the parameter β along

its row, and to the matrices C, D and E along their columns repsectively to obatin the subsets

{βg}, {Cg}, {Dg}, and {Eg}, g = {1, 2, . . . , G} such that

β =



β1

β2

...

βg


, C =

[
C1 C2 . . . Cg

]
, D =

[
D1 D2 . . . Dg

]
, E =

[
E1 E2 . . . Eg

]
,

where the gth subset of β, C, D and E are stored in the gth processor in each cluster of proces-

sors. Notice that the product of matrix Xβ, Cβ, Dβ and Eβ can be written into summation of

products

Xβ =
G∑
g=1

Xgβg, Cβ =
G∑
g=1

Cgβg, Dβ =
G∑
g=1

Dgβg, Eβ =
G∑
g=1

Egβg.
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The original problem (1.1) can be written as

min
βg

B∑
b=1

1

2
‖yb −

G∑
g=1

Xbgβg‖2
2 + λ‖Dgβg‖1,

subject to
G∑
g=1

Cgβg ≥ d,

G∑
g=1

Egβg = f, g = 1, 2, . . . , G, b = 1, 2, . . . , B. (3.14)

Notice that parameter βg, penalty function, equality constraint and inequality constraint will

all change for different processors in different clusters. This is the most general situation of

distributed ADMM and there are several scenarios where the problem (3.14) is applicable.

For example, the whole data have extremely large sample size as well as enormous dimesion

to be saved in one location or the original data are collected at different locations and time

period and stored according to different group of predictors, this approach will be needed. This

is common in big data problem. Another scenario is also privacy preserving. For example,

several pharmaceutical companies want to build a model for the same medicine. However,

on one hand, no company want to share the raw data to others due to privacy. On the other

hand, within each company, the raw data are stored in several different servers corresponding

to different stage in the clinical trial. In this case, the data could not be collected along either n

or p completely. A distributed algorithm splitting along n and p together will become a natural

choice, which only require the share of intermediate calculation results, which is neither the

original raw data within each pharmaceutical company, nor the original raw data within each

stage of clinical trial in the company.

In this algorithm, the technique is to combine the steps we used in section 3.3 and 3.4

together. Each processor only processes the local data stored in the processor within the cluster.

All processors needs to communicate with each other to exchange some information, not only

within each cluster, but also among the clusters. Roughly speaking, during each iteration, there

are (B + 1) major steps, which include B local steps and one global step. In each local step,

each processor within the same cluster processes information based on local data to obtain B

intermediate result, while in the global step, the intermediate results generated from B clusters

will be aggregated to produce a final update.
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Firstly, we rewrite the problem (3.14) as a global consensus problem

min
βbg ,z,ω,βc

g

B∑
b=1

1

2
‖y −

G∑
g=1

Xbgβbg‖2
2 + λ‖z‖1 + ΦRq

+
(ω),

subject to
G∑
g=1

Dgβbg = z,

G∑
g=1

Cgβbg − ω = d,

G∑
g=1

Egβbg = f, βbg = βcg,

g = 1, 2, . . . , G, b = 1, 2, . . . , B.

The augmented Lagrangian function is

Lρ(βbg, z, ω, βcg, ub, vb, wb, hb) =
B∑
b=1

1

2
‖y −

G∑
g=1

Xbgβbg‖2
2 + λ‖z‖1 + ΦRq

+
(ω)

+
B∑
b=1

{ρubT (
G∑
g=1

Dgβbg − z) +
ρ

2
‖

G∑
g=1

Dgβbg − z‖2
2}

+
B∑
b=1

{ρvbT (
G∑
g=1

Cgβbg − ω − d) +
ρ

2
‖

G∑
g=1

Cgβbg − ω − d‖2
2}

+
B∑
b=1

{ρwbT (
G∑
g=1

Egβbg − f) +
ρ

2
‖

G∑
g=1

Egβbg − f‖2
2}

+
B∑
b=1

{ρhbgT (βbg − βcg) +
ρ

2
‖βbg − βcg‖2

2}.

In this problem, the local variables include βbg, hbg, and βcg which are unique to each processor

within each cluster. The other local dual variable Ub = (ub, vb, wb) remains the same across all

processors within each cluster, which is unique to each cluster of processors. The global vari-

ables include z, ω which are the same across all processors. In one typical iteration, the local

variables within each cluster are updated within each processor which are aggregated together

to the cluster to obtain the intermediate result with respect to each cluster, and then the local

variable corresponding to cluster of processors will be updated based on the intermediate result.

Finally, the global variables are updated together and simultaneously across all processors.

We update the estimators in the order of β(k+1)
bg , βcg

(k+1), h(k+1)
bg , U (k+1)

b , z(k+1), and ω(k+1).

Notice that the first three variables are local variables within each cluster, the fourth variable is
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cluster-level local variable, and the remaining two variables are global variables. The detailed

calculation formulas are derived in the following.

The variable β(k+1)
bg is updated in the gth processor within the bth cluster.

β
(k+1)
bg = arg min

βbg

B∑
b=1

1

2
‖y −

G∑
g=1

Xbgβbg‖2
2 +

B∑
b=1

ρ

2
‖

G∑
g=1

Dgβbg − z(k) + u
(k)
b ‖

2
2

+
B∑
b=1

ρ

2
‖

G∑
g=1

Cgβbg − ω(k) + v
(k)
b ‖

2
2 +

B∑
b=1

ρ

2
‖

G∑
g=1

Egβbg − f + w
(k)
b ‖

2
2

+
B∑
b=1

ρ

2
‖βbg − βcg

(k) + h
(k)
bg ‖

2
2,

which is a quadratic function of βbg. The update formula is then given as

β
(k+1)
bg =[XT

bgXbg + ρ(CT
g Cg +DT

gDg + ET
g Eg + Ipg)]−1{XT

bgyb −XT
bg

∑
i 6=g

Xbiβ
(k)
bi

− ρDT
g (
∑
i 6=g

Diβ
(k)
bi − z

(k) + u
(k)
b )− ρCT

g (
∑
i 6=g

Ciβ
(k)
bi − ω

(k) − d+ v
(k)
b )

− ρET
g (
∑
i 6=g

Eiβ
(k)
bi − f + w

(k)
b )− ρ(−βcg

(k) + h
(k)
bg )}.

Compared with the formula to update β(k+1) in section 3.1, there is an extra penalty term in

the objective function and every product between matrix and parameter β is partitioned into

summation of products within each processor. In the iteration, all those local products are

calculated from the update variable in last iteration and updated simultaneously at the end of

the iteration.

The variable βcg
(k+1) is computed in the gth processor with each cluster.

βcg
(k+1) = arg min

βc
g

B∑
b=1

ρ

2
‖β(k+1)

bg − βcg + h
(k)
bg ‖

2
2

=

∑B
b=1(β

(k+1)
bg + h

(k)
bg )

B
=

¯
β

(k+1)
g +

¯
h

(k)
g ,
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where

¯
β

(k+1)
g =

∑B
b=1 β

(k+1)
bg

B
,

¯
h

(k)
g =

∑B
b=1 h

(k)
bg

B
.

It is clear that βcg
(k+1) is essentially an average of all β(k+1)

bg computed by different processors

in different clusters.

The variable h(k+1)
bg is updated in the gth processor within the bth cluster of processors.

h
(k+1)
bg = h

(k)
bg + β

(k+1)
bg − βcg

(k+1).

The variable U (k+1)
b is computed for all processors in the bth cluster of processors.

u
(k+1)
b = u

(k)
b +

G∑
g=1

Dgβ
(k+1)
bg − z(k),

v
(k+1)
b = v

(k)
b +

G∑
g=1

Cgβ
(k+1)
bg − ω(k) − d,

w
(k+1)
b = w

(k)
b +

G∑
g=1

Egβ
(k+1)
bg − f,

The variable z(k+1) is updated globally for all processors in all clusters.

z(k+1) = arg min
z

λ‖z‖1 +
B∑
b=1

ρ

2
‖

G∑
g=1

Dgβ
(k+1)
bg − z + u

(k+1)
b ‖2

2

= (1−
λ
ρB

|
∑G

g=1Dgβ
(k+1)
g + u(k+1)|

)+(
G∑
g=1

Dgβ
(k+1)
g + u(k+1)),

where

G∑
g=1

Dgβ
(k+1)
g =

∑B
b=1(

∑G
g=1Dgβ

(k+1)
bg )

B
,

u(k+1) =

∑B
b=1 u

(k+1)
b

B
.
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The update of z(k+1) is based on the combination of the techniques used in section 3.3 and

section 3.4.

The update of ω(k+1) is computed globally for all processors in all clusters.

ω(k+1) = arg min
ω

ΦRq
+

(ω) +
B∑
b=1

ρ

2
‖

G∑
g=1

Cgβ
(k+1)
bg − ω + v

(k+1)
b ‖2

2

= (
G∑
g=1

Cgβ
(k+1)
g − d+ v(k+1))+,

where

G∑
g=1

Cgβ
(k+1)
g =

∑B
b=1(

∑G
g=1 Cgβ

(k+1)
bg )

B
,

v(k+1) =

∑B
b=1 v

(k+1)
b

B
.

We can see that the updating of β(k+1)
bg , βcg

(k+1), and h(k+1)
bg are within each processor within

each cluster locally, while the updating of U (k+1)
b is updated for all processors within each

cluster locally, and the updating of z(k+1) and ω(k+1) are computed globally for all processors

in all clusters.

The iteration will stop if the primal and dual residuals are small enough. We have showed

the stopping rule for distributed ADMM with splitting along n and p in section 3.3 and 3.4 re-

spectively. It is easy to see that splitting along p will not affect the result from the stopping rule

of section 3.1 and we only need to consider the primal and dual residual in different processors

together among the clusters, that is to say, from splitting along n. In this way, all processors will

stop iterations at the same time. The stopping rule should be the same as the one we derived in
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section 3.3, and the primal and dual residuals for th bth cluster are given by

rprim,b =



Dβ
(k+1)
b − z(k+1)

Cβ
(k+1)
b − ω(k+1) − d

Eβ
(k+1)
b − f

β
(k+1)
b − β(k+1)

c


,

sdual,b = ρ[DT (z(k+1) − z(k)) + CT (ω(k+1) − ω(k)) + (β(k+1)
c − β(k)

c )],

where

β
(k+1)
b =



β
(k+1)
b1

β
(k+1)
b2

...

β
(k+1)
bG


, and β(k+1)

c =



βc1
(k+1)

βc2
(k+1)

...

βcG
(k+1)


.

The stopping rule is

√√√√ B∑
b=1

‖r(k+1)
prim,b‖2

2 ≤ εprim,

√√√√ B∑
b=1

‖s(k+1)
dual,b‖2

2 ≤ εdual,

where

εprim =
√
B(m+ q + s+ p)εabs

+ εrelmax{

√√√√ B∑
b=1

‖A∗1β
(k+1)
b ‖2

2,
√
B‖A2z

(k+1)‖2,
√
B‖A3ω

(k+1)‖2,
√
B‖β(k+1)

c ‖2,
√
B‖b‖2}

=
√
B(m+ q + s+ p)εabs

+ εrelmax{

√√√√ B∑
b=1

‖A∗1β
(k+1)
b ‖2

2,
√
B‖z(k+1)‖2,

√
B‖ω(k+1)‖2,

√
B‖β(k+1)

c ‖2,
√
B‖b‖2},

εdual =
√
Bpεabs + εrel

√√√√ B∑
b=1

‖ρA∗1U∗b
(k+1)‖2

2,
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where matrices A2, A3 are as defined before in section 3.1, A∗1 is defined in section 3.3, and

U∗b
(k+1) =



u
(k+1)
b

v
(k+1)
b

w
(k+1)
b

h
(k+1)
b


,

where

h
(k+1)
b =



h
(k+1)
b1

h
(k+1)
b2

...

h
(k+1)
bG


.

The finalized algorithm with distributed ADMM splitting along n and p is as follows:
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Algorithm 5: Distributed ADMM algorithm splitting along n and p
Result: β

initialization; while√√√√ B∑
b=1

‖r(k+1)
prim,b‖2

2 > εprim or

√√√√ B∑
b=1

‖s(k+1)
dual,b‖2

2 > εdual

do
For bth cluster, b = 1, 2, . . . , B

For gth processor, g = 1, 2, . . . , G

β
(k+1)
bg = [XT

bgXbg + ρ(CT
g Cg +DT

gDg + ET
g Eg + Ipg)]−1{XT

bgyb −XT
bg

∑
i 6=g

Xbiβ
(k)
bi

− ρDT
g (
∑
i 6=g

Diβ
(k)
bi − z

(k) + u
(k)
b )− ρCT

g (
∑
i 6=g

Ciβ
(k)
bi − ω

(k) − d+ v
(k)
b )

− ρET
g (
∑
i 6=g

Eiβ
(k)
bi − f + w

(k)
b )− ρ(−βcg

(k) + h
(k)
bg )}

βcg
(k+1) =

¯
β

(k+1)
g +

¯
h

(k)
g

h
(k+1)
bg = h

(k)
bg + β

(k+1)
bg − βcg

(k+1)

u
(k+1)
b = u

(k)
b +

G∑
g=1

Dgβ
(k+1)
bg − z(k)

v
(k+1)
b = v

(k)
b +

G∑
g=1

Cgβ
(k+1)
bg − ω(k) − d

w
(k+1)
b = w

(k)
b +

G∑
g=1

Egβ
(k+1)
bg − f

For all processors:

z(k+1) = (1−
λ
ρB

|
∑G

g=1Dgβ
(k+1)
g + u(k+1)|

)+(
G∑
g=1

Dgβ
(k+1)
g + u(k+1))

ω(k+1) = (
G∑
g=1

Cgβ
(k+1)
g − d+ v(k+1))+

end

50



Chapter 4

Proof of Convergence

In this section, we will show the proof of convergence mainly based on the discussion of suf-

ficient condition of convergence in Chen et al. (2016). In this paper, the author proposed a

sufficient condition ensuring the convergence of the solution in (3.1), which is

ATB = 0, or BTC = 0 , or ATC = 0 (4.1)

which means that there exists one orthogonal pair of coefficient matrix in the constraint. Specif-

ically, if two coefficient matrices in consecutive order are orthogonal, i.e. ATB = 0 or

BTC = 0. The problem (3.1) can be reduced to a special case of the original format of ADMM

problem as (2.1). Suppose we have the condition that ATB = 0, the augmented Lagrangian

function of (3.1) is

Lρ(x, z, y, U) = f(x) + g(z) + h(y) + ρUT (Ax+Bz + Cy − d) +
ρ

2
‖Ax+Bz + Cy − d‖2

2,
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where UT = (uT , vT , wT ) are the (scaled) Lagrangian multiplier with respect to x, z and y and

ρ > 0 is the user-specified constant. The update scheme of this problem is

x(k+1) = arg min
x
{Lρ(x, z(k), y(k), U (k))|x ∈ X},

z(k+1) = arg min
z
{Lρ(x(k+1), z, y(k), U (k))|z ∈ Z},

y(k+1) = arg min
y
{Lρ(x(k+1), z(k+1), y, U (k))|y ∈ Y},

U (k+1) = U (k) − ρ(Ax(k+1) +Bz(k+1) + Cy(k+1) − d).

According to the first-order optimality conditions of the minimization problem above,

f(x)− f(x(k+1)) + (x− x(k+1))T{−AT [U (k) − ρ(Ax(k+1) +Bz(k) + Cy(k) − d)]} ≥ 0,∀x ∈ X ,

g(z)− g(z(k+1)) + (z − z(k+1))T{−BT [U (k) − ρ(Ax(k+1) +Bz(k+1) + Cy(k) − d)]} ≥ 0,∀z ∈ Z,

h(y)− h(y(k+1)) + (y − y(k+1))T{−CT [U (k) − ρ(Ax(k+1) +Bz(k+1) + Cy(k+1) − d)]} ≥ 0,∀y ∈ Y .

Under the assumption ATB = 0, the optimality conditions can be simplified as

f(x)− f(x(k+1)) + (x− x(k+1))T{−AT [U (k) − ρ(Ax(k+1) + Cy(k) − d)]} ≥ 0,∀x ∈ X ,

g(z)− g(z(k+1)) + (z − z(k+1))T{−BT [U (k) − ρ(Bz(k+1) + Cy(k) − d)]} ≥ 0,∀z ∈ Z,

h(y)− h(y(k+1)) + (y − y(k+1))T{−CT [U (k) − ρ(Ax(k+1) +Bz(k+1) + Cy(k+1) − d)]} ≥ 0,∀y ∈ Y ,
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which is the first-order optimality conditions of the scheme

(x(k+1), z(k+1)) = arg min
x,z

{F (x, z)− (U (k))
T
D

x
z

+
ρ

2
‖D

x
z

+ Cy(k) − d‖2
2},

y(k+1) = arg min
y
{Lρ((x(k+1), z(k+1)), y, U (k))},

U (k+1) = U (k) − ρ(D

x
z

+ Cy(k+1) − d),

where

D =

[
A B

]
,

F (x, z) = f(x) + g(z).

If we define a new variable x∗ =

x
z

, then this problem can be rewritten as

min
x∗,z

F (x∗) + h(y), subject to Dx∗ + Cy = d,

which is the original format of ADMM algorithm in (2.1). Then the convergence of solution

in this algorithm could be proved based on the discussion in Boyd et al. (2011) and Mota et al.

(2011). Similar transformation of the first-order optimality conditions can be done with the

assumptionBTC = 0 as well. In general, if there are two consecutive matrices in the constraint

that are orthogonal, the variables associated with the matrices could be combined to a new

variable so that the number of variables could be reduced by 1. Based on this technique, when

there are more than 3 variables in the objective function and constraint, we need to find as much

as consecutively orthogonal matrices to reduce the number of variables in the optimization

problem. If there are only 3 variables left at the end and there is at least one pair of matrices

orthogonal, in other words, if the condition (4.1) is satisfied, the convergence of the extended

ADMM is guaranteed.
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4.1 Extended ADMM With Slack Variables

Following the discussion above, in this section, we will prove the convergence of the algorithm

introduced in section 3.1. The optimization problem is

min
β,z,ω

1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβ = z, Cβ − ω − d = 0, Eβ = f.

The constraints can be written as A1β + A2z + A3ω = b, where

A1 =


D

C

E

 , A2 =


−Im

0q

0s

 , A3 =


0m

−Iq

0s

 , b =


0m

d

f

 .

Define f(β) = 1
2
‖y −Xβ‖2

2, g(z) = λ‖z‖1, and h(ω) = ΦRq
+

(ω), the problem is equivalent to

min
β,z,ω

f(β) + g(z) + h(ω),

subject to A1β + A2z + A3ω = b.

According to Chen et al. (2016), since there are three variables in the system, if there exists one

pair of orthogonal matrix, the convergence can be guaranteed. In fact, It is apprantly that A2

and A3 are orthogonal matrices. In conclusion, the solution of this algorithm will converge to

a limit point.

4.2 Extended ADMM With Large p

In this section, we will focus on the convergence of the algorithm discussed in section 3.2.

Recall that after adding all three new constraints with respect to M , P , Q, which are used to
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simplify the matrix CTC, DTD and ETE, the optimization problem is given as

min
β,z,ω

1

2
‖y −Xβ‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβ = z, Cβ − ω − d = 0, Eβ = f,

(M − CTC)
1
2β = s̃, (P −DTD)

1
2β = ũ, (Q− ETE)

1
2β = ṽ.

The constraints can be written as A1β + A2z + A3ω = b, where

A1 =



D

C

E

(M − CTC)
1
2

(P −DTD)
1
2

(Q− ETE)
1
2


, A2 =



−Im

0q

0s

0p

0p

0p


, A3 =



0m

−Iq

0s

0p

0p

0p


, b =



0m

d

f

s̃

ũ

ṽ


.

Define f(β) = 1
2
‖y −Xβ‖2

2, g(z) = λ‖z‖1, and h(ω) = ΦRq
+

(ω), the problem is equivalent to

min
β,z,ω

f(β) + g(z) + h(ω),

subject to A1β + A2z + A3ω = b.

Since matrices A2 and A3 are orthogonal and there are only three variables in the system, the

convergence will be guaranteed.

4.3 Distributed ADMM Splitting Along n

In this section, we will focus on the convergence of the distributed algorithm discussed in

section 3.3. Recall the global consensus problem

min
βb,z,ω

B∑
b=1

1

2
‖yb −Xbβb‖2

2 + λ‖z‖1 + ΦRq
+

(ω),

subject to Dβb = z, Cβb − ω = d, Eβb = f, βb = β, b = 1, 2, . . . , B.

55



The constraints can be written as

B∑
b=1

Abβb + Pz +Qω +Rβ = b0,

where

Ab =



0

0

...

D

C

E

Ip

0

0

...

0

0



, P =



−Im

0

0

0

−Im

0

0

0

...

−Im

0

0

0



, Q =



0

−Iq

0

0

0

−Iq

0

0

...

0

−Iq

0

0



, R =



0

0

0

−Ip

0

0

0

−Ip
...

0

0

0

−Ip



, and b0 =



0

d

f

0

0

d

f

0

...

0

d

f

0



,

where matrix D is on the [4× (b− 1) + 1]th block of Ab, −Im is on every [4× (b− 1) + 1]th

block of P , −Iq is on every [4× (b− 1) + 2]th block of Q, −Ip is on every [4× b]th block of R,

and d is on every [4× (b− 1) + 2]th block of b0, for b = 1, 2, . . . , B. Notice that there are more

than three variables in the optimization problem. We need to apply the technique discussed at

the beginning of this chapter to reduce the number of variables.
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Firstly, it is not hard to find that the matrices {Ab}, b = 1, 2, . . . , B are mutually orthogo-

nal. Applying the technique to them could result in the new matrix and associated new variable

A =



D

C

E

Ip

D

C

E

Ip
...

D

C

E

Ip



, β∗ =



β1

β2

...

βB



T

.
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Furthermore, notice that matrices P , Q and R are mutually orthogonal, the new matrix with

corresponding variable

W =



−Im

−Iq

0

−Ip

−Im

−Iq

0

−Ip
...

−Im

−Iq

0

−Ip



, α =


z

ω

β


T

,

could be derived from the discussed technique. Define

F (β∗) =
B∑
b=1

1

2
‖yb −Xbβb‖2

2,

G(α) = λ‖z‖1 + ΦRq
+

(ω).

After the dimension reduction of the optimization problem, the renewed problem can be written

as

min
β∗,α

F (β∗) +G(α),

subject to Aβ∗ +Wα = b0,
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which is in the form of (2.1) that includes only two variables. Then the convergence can be

proved referring to Boyd et al. (2011) and Mota et al. (2011).

4.4 Distributed ADMM Splitting Along p

In this section, we will focus on the convergence of the distributed algorithm discussed in

section 3.4. Recall the global consensus problem

min
βg ,z,ω

1

2
‖y −

G∑
g=1

Xgβg‖2
2 + λ‖z‖1 + ΦRq

+
(ω),

subject to
F∑
g=1

Dgβg = z,

G∑
g=1

Cgβg − ω = d,

G∑
g=1

Egβg = f, g = 1, 2, . . . , G.

The constraints can be written as

G∑
g=1

Agβg + Pz +Qω = b0,

where

Ag =


Dg

Cg

Eg

 , P =


−Im

0

0

 , Q =


0

−Iq

0

 , and b0 =


0

d

f

 .

Notice that matrices P and Q are consecutively orthogonal. The new matrix and associated

variable

W =


−Im

−Iq

0

 , α =

z
ω


T

,

can be obtained by applying the technique discussed before. However, we need to do something

to the variables βg to reduce the number to at least two or the sufficient condition in Chen et al.

59



(2016) could not be applied and the convergence will not be guaranteed. In order to apply the

dimension reduction, we need to have the following assumption

Assumption 4. matrices D, C and E have full column rank, while the number of rows in D,

C and E, i.e. m, q and s, should be not less than the shared number of columns p.

This assumption is similar to the assumption in section 2.2 which is used to prove the

uniqueness of solution by Mota et al. (2011). It is important to point out that this assumption

is reasonable. Since the raw data is stored in each processor, there should be unique linear

constraint associated with each of them, which means that the number of constraints should be

at least the same as the length of β. And in order to reduce the communication among all the

processors and protect the privacy, the constraint in each processor should be only related to

the corresponding βg itself. In fact, we use Dg as an example, which can be extended to Cg and

Eg as well, that there should be only one row with nonzero entries, while the other rows are all

0. The nonzero entries are associated with the unique constraint of βg. In such case, the matrix

D =

[
D1 D2 . . . DG

]

=





a1

0

...

0





0

a2

...

0


. . .



0

0

...

aG




,

where ag, g = 1, 2, . . . , G are the unique vector of constraint corresponding to βg which is on

the gth block of Dg. The same expansion can be applied to C and E. Then D, C, E are all

with full rank, or in other words, the matrices {Dg}, {Cg}, and {Eg} are mutually orthogonal

within each set, which gives the mutually orthogonal of Ag.
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Under the assumption 4, matrices Ag are mutually orthogonal as discussed above. By

applying the reduction technique, the new matrix and corresponding variable

A =


D

C

E

 , and β =



β1

β2

...

βG


,

are obtained. Define

F (β) =
1

2
‖y −

G∑
g=1

Xgβg‖2
2,

H(α) = λ‖z‖1 + ΦRq
+

(ω).

The optimization problem can be written as

min
β,α

F (β) +H(α),

subject to Aβ +Wα = b0,

which only contains two variables to update. According to Boyd et al. (2011) and Mota et al.

(2011), the convergence is proved.

4.5 Distributed ADMM Splitting Along n and p

In this section, we will focus on the convergence of the distributed algorithm discussed in

section 3.5. Recall the global consensus problem

min
βbg ,z,ω,βc

g

B∑
b=1

1

2
‖y −

G∑
g=1

Xbgβbg‖2
2 + λ‖z‖1 + ΦRq

+
(ω),

subject to
G∑
g=1

Dgβbg = z,
G∑
g=1

Cgβbg − ω = d,

G∑
g=1

Egβbg = f, βbg = βcg,

g = 1, 2, . . . , G, b = 1, 2, . . . , B.
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The constraints can be written as

B∑
b=1

{
G∑
g=1

Abgβbg}+ Pz +Qω +
G∑
g=1

Rgβ
c
g = b0,

where

Abg =



0

0

...

Dg

Cg

Eg

Ipg

0

0

...

0

0



, P =



−Im

0

0

0

−Im

0

0

0

...

−Im

0

0

0



, Q =



0

−Iq

0

0

0

−Iq

0

0

...

0

−Iq

0

0



, R =



0

0

0

−Ipg

0

0

0

−Ipg
...

0

0

0

−Ipg



, and b0 =



0

d

f

0

0

d

f

0

...

0

d

f

0



,

where matrix Dg is on the [4× (b− 1) + 1]th block of Abg, −Im is on every [4× (b− 1) + 1]th

block of P , −Iq is on every [4× (b− 1) + 2]th block of Q, −Ipg is on every [4× b]th block of

Rg, and d is on every [4× (b− 1) + 2]th block of b0, for b = 1, 2, . . . , B, g = 1, 2, . . . , G.
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The matrices P , Q are consecutively orthogonal, which can be combined into

W =



−Im

−Iq

0

0

−Im

−Iq

0

0

...

−Im

−Iq

0

0



, associated with α =

z
ω


T

.
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Notice that Ipg is the subset of several columns of identity matrix, they are mutually orthogonal

to each other. Then it is easy to find that the matrices Rg are mutually orthogonal, which derive

R =



0

0

0

−Ip

0

0

0

−Ip
...

0

0

0

−Ip



, associated with βc =



βc1

βc2
...

βcG


.

So far, we have reduced the variables z, ω and βcg, g = 1, 2, . . . , G into two variables α and βc.

We need to reduce the variables βbg, b = 1, 2, . . . , B, g = 1, 2, . . . , G into one variable so that

the optimization problem will contain three variables. Notice that the new matrices W and R

are consecutively orthogonal, according to the sufficient condition (4.1), the convergence will

be guaranteed.

For fixed b, under assumtption 4, the matrices Abg, g = 1, 2, . . . , G are mutually orthog-

onal as we discussed in the previous section. In this way, Abg can be grouped into B clusters
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and simplified as B matrices

A1 =



D

C

E

Ip

0

0

...

0

0



, A2 =



0

0

0

0

D

C

E

Ip

0

0

...

0

0



, . . . , AB =



0

0

...

0

0

D

C

E

Ip



,

which are associated with the variables

β1 =



β11

β12

...

β1G


, β2 =



β21

β22

...

β2G


, . . . , βB =



βB1

βB2

...

βBG


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respectively. Note that generated new matrices Ab, b = 1, 2, . . . , B are also mutually orthogo-

nal, which can be combined as

A =



D

C

E

Ip

D

C

E

Ip
...

D

C

E

Ip



, associated with the new variable β =



β1

β2

...

βB



T

.

Finally, the original global consensus problem is reduced to three variables β, α and βc. Denote

F (β) =
B∑
b=1

1

2
‖y −

G∑
g=1

Xbgβbg‖2
2,

H(α) = λ‖z‖1 + ΦRq
+

(ω),

and the corresponding new optimization problem can be written as

min
β,α,βc

F (β) +H(α),

subject to Aβ +Wα +Rβc = b0,
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which is in the form of (3.1). Since matrice W and R are orthogonal, i.e. W TR = 0, which is

the sufficient condition in Chen et al. (2016). The convergence of the solution to this distributed

ADMM algorithm is proved.
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Chapter 5

Implementation

This chapter will mainly discuss several issues related to the implementation of the proposed

algorithms in Chapter 3.

5.1 Selection of Tuning Parameters

The implementation of the proposed algorithms required the selection of a proper value of ρ.

Roughly speaking, a large value of ρ places a larger penalty on the violation of primal feasibility

and so tends to produce small primal residuals. Conversely, a small value of ρ tends to produce

small dual residuals. Ideally, we expect both primal and dual residuals reduce at a comparable

rate, and hence leads to a faster convergence.

The idea is to make these two residuals hold similar magnitude of the length. Increase ρ

if primal residual are too large and decrease ρ if dual residual are too large. According to He

et al. (2000) and Wang and Liao (2001), a simple scheme is to choose ρ as follows.

ρ(k+1) =


ηincρ

(k) if‖r(k)
prim‖2 > µ‖s(k)

dual‖2,

ρ(k)

ηdec
if‖s(k)

dual‖2 > µ‖r(k)
prim‖2,

ρ(k), otherwise

where µ > 1, ηinc > 1, and ηdec > 1 are user-specified constants. A typical choice is µ = 10

and ηinc = ηdec = 2.
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5.2 Sparse Matrices

A sparse matrix is a matrix with only a few nonzero entries. Because of the sparsity structure,

a sparse matrix can be stored in terms of its nonzero entries and the location of these entries. In

contrast, a dense matrix has to be stored with all entries. Therefore, a sparse matrix may need

much smaller size of memory. The computational cost could be saved dramatically especially

when the size of the matrix is extremely large.The matrix calculation involving sparse matrices

may be achieved in a much faster algorithm. For example, in the generalized LASSO problem,

the computational complexity to compute Dβ is O(np2) if D is dense matrix, while the com-

plexity reduces to O(np) when D is diagonal matrix (the traditional LASSO problem). In real

examples, the linear constraints and penalty term should be with easier form, i.e. we could al-

ways assume that the matrix C, D and E are sparse matrices in applications. Instead of storing

the information of all entries, we could allocate the memory only for the nonzero entries and

its associated positions. In such case, the computational cost could be saved greatly, especially

in the big data problem.

5.3 Distributed Computing

The distributed ADMM algorithms derived in section 3.3, 3.4 and 3.5 are implemented using

openMPI(https://www.open-mpi.org/), which is the open source implementation of

message passing interface. The openMPI provides a function called Allreduce. When this

function is called, each processor will send the data (ex. β(k+1)
b ) to other processors and some

operator (ex. summation) can be applied to aggregate the data and the intermediate results (ex.∑B
b=1 β

(k+1)
b ) will be sent back to all processors. The global variables are computed in the same

framework.
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Chapter 6

Simulation

In this chapter, we will report some simulation studies, which are used to illustrate the perfor-

mance of the proposed algorithms, as well as some comparisons with existing algorithms.

6.1 Influence of ρ

This simulation example is used to demonstrate the influence of ρ on the rate of convergence

of the proposed algorithm.

Randomly generate a design matrix X with n = 550 and p = 500 where each en-

try is independently sampled from N(0, 1). The response vector y = Xβ + ε, where β =

(1.0, 0.5,−1.0, 0.0, . . . , 0.0, 1.0, 0.5,−1.0, 0.0, . . . , 0.0)T contains nonzero elements in the 1st,

2nd, 3rd, 11th, 12th and 13th positions and ε is sampled from N(0, 1) as the random error.

Using the LASSO model

min
β

1

2
‖y −Xβ‖2

2 + λ‖β‖1,

subject to

β1 + β2 + β3 ≥ 0, β1 + β3 + β11 + β13 = 0,

β2 + β5 + β11 ≥ 1, β2 + β8 + β12 = 1.

Figure 6.1 shows the result when λ = 5 and the possible value of ρ is selected to be 1, 5,

and 1000. When ρ = 1, primal residuals are larger than dual residuals. When ρ = 1000,

70



dual residuals are larger than primal residuals. When ρ = 5, both primal and dual residuals

decreases at a similar magnitude. It is clear to see that ρ = 5 converges much faster than the

cases when ρ = 1 and ρ = 1000.
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Figure 6.1: Influence of ρ

6.2 Influence of λ

This example is used to demonstrate the influence of λ on the degree of freedom, which will

affect the evaluation based on information criterion (IC). The same setting in the previous

section will be used while ρ is fixed at 5. The set of possible values of tuning parameter
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λ = (0.01, 0.1, 1, 5, 10, 20). According to Zeng et al. (2017), the BIC can be defined as

BIC(ŷ) =
‖y − ŷ‖2

2

nσ2
+
log(n)

n
df(ŷ), (6.1)

where ŷ is the estimated response Xβ̂ and n is the sample size. The degree of freedom is as

follows

df(ŷ) = E[dim(col(XPnull(G−A,B)))],

where Pnull(G−A,B) is the projection matrix associated with null(G−A,B), and

A = {i : Diβ̂ 6= 0}, B = {k : Ckβ̂ = dk}

that A is the set of indexes corresponding to non-zero components of Dβ̂ and B is the set of

indexes corresponding to active inequality constraints. Additionaly, define

G−A,B = (DT
−A,−CT

B ,−ET )T .

In practice, this degree of freedom can be obtained in the following steps. We obtain A and

B according to their definition and estimate degree of freedom by the rank of XPnull. Since

Pnull is the projection matrix, i. e., XPnull = X(Ip − QQT ), where Q is the Q-matrix of the

QR-decomposition of GT
−A,B. Then the degree of freedom is the rank of XPnull which can be

determined by applying the QR-decomposition with pivoting to XPnull.

Figure 6.2 shows the result of BIC with different tuning parameters λ. When λ < 1, the

BIC will decrease as the tuning parameter increase. When λ > 1, the BIC will be an increasing

function with respect to λ. The best λ in this scenario should be 1. It is important to point out

that the most accurate value of the best λ should be between 0.1 and 5. If we have more training

values of λ, we could see the trend of λ between 0.1 to 1 and 1 to 5 more clearly and may be

able to find a more accurate tuning parameter.
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Figure 6.2: Influence of λ

6.3 Influence of number of subgroups

This example is used to demonstrate the influence of the number of subgroups when splitting

along n in ADMM.

Randomly generate a design matrix X with n = 600 and p = 40, where each en-

try is independently sampled from N(0, 1). The response vector y = Xβ + ε, where β =

(1.0,−1.0, 0.5, 2, 1, . . . , 1)T that all the elements after the 4th position are all 1 and ε is sam-

pled from N(0, 1). C matrix is a diagonal matrix with the diagonal entries repeating from 1 to

10 by 4 times except the 2nd diagonal element with −1 and vector d is a 0 vector. Matrix E is

set to be Ip and f = Eβ. D is also an diagonal matrix with all elements equal to 1. λ = 1 and

ρ = 0.8 are fixed tuning parameters. We used 4 different ways to partition the design matrix

X: equally divided in 2 subgroups, 4 subgroups, 6 subgroups and 8 subgroups along its rows.

We run the algorithm in 3.1 and 3.3 to the same dataset as generated above and use the relative
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norm to measure the difference of number of subgroups which is defined as

R =
‖β̂n − β‖2

‖β̂s − β‖2

where β̂n is the estimate from the algorithm splitting along n and β̂s is estimated by applying

the Extended ADMM with slack variables. The result is given below in figure 6.3.
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Figure 6.3: Influence of λ

It’s clear to see that when the number of subgroups increase from 2 to 8, the relative norm

is not changing much, which means the estimate generated by ADMM splitting along n is

robust to the number of subgroups partitioned in design matrix X . The similar result could be

found when we use the ADMM splitting along p.

Notice that when the number of subgroups increase, the numerator of the relative norm

is decreasing which means the accuracy of the estimated β in distributed ADMM along n is

increasing. This is reasonable since both estimation of β in this two algorithms highly converge

to the true parameter β, and the 2-norm differences are both very close to 0. When the number
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of subgroups change, the 2-norm difference in the numerator will change with difference less

than 0.00001. However, the denominator is very close to 0 so that this little change will affect

the relative norm with a comparably large differece. In fact, the accuracy can be achieved in

the proposed algorithms are in the level of 0.001. If I set the 2-norm in the numerator to be

max(‖β̂n − β‖2, 0.001), then this relative norm will keep the same for all different scenarios.

6.4 Influence of n and p

In this section, we will mainly focus on the demonstration of the performance of the extended

ADMM algorithms introduced in Chapter 3 as sample size n and dimension p increase.

The design matrixX is generated independently fromN(0, 1) and the response y = Xβ+

ε, where β is the same as the previous section, as well as the matrices C, D, E and vectors d

and f in the linear constraints. λ = 1 and ρ = 0.8 are still the selected fixed values for the

tuning parameters. The number of subgroups to partition along n and p are both set to be 4. In

this simulation, we will generate the results for 3 differen scenarios.

• Dimension p = 400 fixed, while sample size n with increasing sequence 4000, 8000, and

16000.

• Sample size n = 4000 fixed, while the dimension p with increasing sequence 400, 800,

1600.

• Sample size n and dimension p are both increasing in the same rate with the sequences n

= (4000, 8000, 16000) and p = (400, 800, 1600).

The number of iteration is set to be 100 for each case. The following metrics will be evaluted

in the simulation.

• Angle between true parameter β and estimated β̂.

θ =
< β, β̂ >

‖β‖2‖β̂‖2
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• Relative error between true parameter β and estimated β̂.

r =
‖β − β̂‖2

‖β‖2

• Distance between true parameter β and estimated β̂.

d = ‖β − β̂‖2

• Objective function based on the estimated β̂.

f̂ =
1

2
‖y − xβ̂‖2

2 + ‖Dβ̂‖1

• Inequality constraint based on the estimated β̂.

I1 = mean(Cβ̂ − d)

• Equality constraint based on the estimated β̂.

I2 = mean(Eβ̂ − f)

The Figure 6.4, Figure 6.5 and Figure 6.6 are the generated boxplots of the simulation in

the scenarios above where the extended ADMM with slack variable is ADMM , extended

ADMM with large p is ADMMz, distributed ADMM splitting along n is ADMMn, and dis-

tributed ADMM splitting along p is ADMMp and distributed ADMM splitting along n and p

is ADMMnp.

The performance of Distributed ADMM along n and along n and p are better than the

other ADMM algorithms. However, these distributed ADMM cannot achieve smaller objec-

tive function compared to the others since they both strictly hold the equality and inequality

constraints. From the graph, we can see that the distributed ADMM along n and np are more

robust to sample size n and dimension p than other approaches as n and p increase. At the same
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Figure 6.4: Performance when n increases
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Figure 6.5: Performance when n increases
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Figure 6.6: Performance when n increases

79



time, we expect to have higher efficiency in distributed ADMM. When splitting along n is not

available to be used in the real dataset, we prefer to run the distributd ADMM along p instead

of the extended ADMM with slack variables since they preserve similar performance. When

the situation is p > n, the proposed algorithm in section 3.2 needs to be considered.

Remark that in the simulation, it is without the case when p > n since the uniqueness will

not be guaranteed in this scenario. Distributed ADMM along p (section 3.4) and Distributed

ADMM along n and p (section 3.5) can split the dataset along column to make the p in each

local processor less than n in order to hold the uniqueness, while the other approaches are not

able to obtain that. Although I introduced the proof of convergence for the algorithm proposed

in section 3.2, the uniqueness needs to be considered and only if some good conditions are

held, the application of that algorithm is reasonable to achieve higher efficiency.

The mean and standard deviation of the cos(Angle) and estimated objective function for

all algorithms when n increase can be found in Table 6.1 while the mean and standard deviation

of the inequality and equality constraints can be found in Table 6.2.

Table 6.1: Mean and Standard Deviation of Performance Metrics
Item cos (Angle)

Algorithm Sample Size Mean Standard Deviation
ADMM n = 1000 0.99 1.44× 10−7

n = 2000 0.99 4.65× 10−7

n = 4000 0.99 4.85× 10−7

ADMMz n = 1000 0.99 1.43× 10−7

n = 2000 0.99 4.76× 10−7

n = 4000 0.99 4.99× 10−7

ADMMn n = 1000 1 3.58× 10−11

n = 2000 1 1.27× 10−9

n = 4000 0.99 2.05× 10−8

ADMMp n = 1000 0.99 1.47× 10−7

n = 2000 0.99 4.74× 10−7

n = 4000 0.99 4.88× 10−7

ADMMnp n = 1000 0.99 9.72× 10−9

n = 2000 0.99 3.46× 10−8

n = 4000 0.99 9.77× 10−8

Item Objective Function
Algorithm Sample Size Mean Standard Deviation
ADMM n = 1000 2142.37 21.59

n = 2000 4047.85 42.62
n = 4000 8106.04 23.48

ADMMz n = 1000 2144.74 21.82
n = 2000 4041.93 43.35
n = 4000 8105.06 22.53

ADMMn n = 1000 2190.56 20.49
n = 2000 4159.10 47.59
n = 4000 8222.48 24.73

ADMMp n = 1000 2144.67 21.43
n = 2000 4044.15 41.22
n = 4000 8104.44 23.01

ADMMnp n = 1000 2191.42 20.91
n = 2000 4179.27 45.62
n = 4000 8310.33 23.60

6.5 Comparison of ADMM and QP

This section is intended to demonstrate the performance and speed of the proposed ADMM

algorithms. As a benchmark, the problem (1.1) is also solved as a quadratic programming

problem, which is computed using Gurobi (https://www.gurobi.com/); refer to Zeng
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Table 6.2: Mean and Standard Deviation of Linear Constraints
Item Inequality Constraint

Algorithm Sample Size Mean Standard Deviation
ADMM n = 1000 1.001 0.002

n = 2000 1.001 0.003
n = 4000 0.997 0.002

ADMMz n = 1000 1.001 0.003
n = 2000 1.002 0.003
n = 4000 0.997 0.002

ADMMn n = 1000 1.000 2.528× 10−5

n = 2000 1.000 1.967× 10−4

n = 4000 1.000 4.845× 10−4

ADMMp n = 1000 1.001 0.003
n = 2000 1.002 0.003
n = 4000 0.997 0.002

ADMMnp n = 1000 1.000 4.264× 10−5

n = 2000 1, 000 4.245× 10−5

n = 4000 1.000 3.192× 10−4

Item Equality Constraint
Algorithm Sample Size Mean Standard Deviation
ADMM n = 1000 7.835× 10−4 2.947× 10−3

n = 2000 1.916× 10−3 2.653× 10−3

n = 4000 −3.443× 10−3 2.093× 10−3

ADMMz n = 1000 1.098× 10−3 2.973× 10−3

n = 2000 1.933× 10−3 2.631× 10−3

n = 4000 −3.323× 10−3 2.008× 10−3

ADMMn n = 1000 6.026× 10−6 2.589× 10−5

n = 2000 1.454× 10−4 1.998× 10−4

n = 4000 −9.197× 10−4 4.894× 10−4

ADMMp n = 1000 8.950× 10−4 2.976× 10−3

n = 2000 1.905× 10−3 2.688× 10−3

n = 4000 −3.315× 10−3 2.086× 10−3

ADMMnp n = 1000 −5.483× 10−6 4.270× 10−5

n = 2000 1.293× 10−3 7.749× 10−4

n = 4000 −1.196× 10−5 3.252× 10−4

et al. (2017) for details. Gurobi is one of the fastest solvers for linear and quadratic program-

ming problems.

Randomly generate a design matrix X with n = 4000 rows and p = 400 columns, where

each entry is independently sampled from N(0, 1). The response vector y = Xβ + ε, where β,

matrices C, D, E, vectors d and f are the same as the setting in the previous section. λ = 1

and ρ = 0.8 are fixed values and the number of subgroups along n and p are fixed as 4. In this

simulation, we apply the 5 proposed extended ADMM algorithms introduced in Chapter 3 and

we track the estimated objective function

1

2
‖y −Xβ̂‖2

2 + ρ‖Dβ̂‖1

as the iteration increases from 1 to the max value which is determined as 10000. The faster

the objective function decrease, the more efficiency the algorithm could achieve. After the

simulation, the result can be found in figure 6.7.

It is clear to find that the extended ADMM with slack variable (ADMM ), extended

ADMM with large p (ADMMz), distributed ADMM splitting along n (ADMMn), and dis-

tributed ADMM splitting along p (ADMMp) converge to the minimum value at the first several

iterations while the Distributed ADMM splitting along n and p (ADMMnp) finally converge to

the minimum objective function at around 250’s iteration. At the same time, the quadratic pro-

gramming could have the minimum objective function in the 1st iteration which is not shown in
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Figure 6.7: Convergence rate of extended ADMM algorithms

this figure. However, since the distributed ADMM can solve those subgroups at the same time,

the time of each iteration should be much less than the time in each iterationin the extended

ADMM or quadratic programming which needs to consider the whole data. In our setting, the

number of subgroups along n and p are both 4, which means that the iteration time in each

iteration of distributed ADMM along n and p should be 1
4×4

= 1
16

of the time in each iteration

to the non-distributed case. Although it converges at around 250’s iteration, but the total time

length of these iterations are about 250 × 1
16
≈ 15 times of the time length in each iteration

of non-distributed case. Notice that the computational complexity in the algorithm in O(np2),

which means the efficiency in each subgroup is larger than 16 times of the efficiency in the

whole data. As sample size n and dimension p goes larger, this difference will be more obvious

and the distributed ADMM will be much more efficient which is more appropriate to be used

to the big data.
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Chapter 7

Real Example

In this chapter, I will mainly discuss the performance of the extended ADMM algorithm on real

datasets. The first dataset is the one related to the cooperative spectrum sensing for cognitive

radio networks (CRN) and the other one is from the National Health and Nutrition Examination

Survey (NHANES). In the dataset of CRN, I applied the ADMM with slack variables and the

ADMM splitting along n and ADMM splitting along p are both implemented in the dataset of

NHANES.

7.1 Cooperative spectrum sensing for cognitive radio networks

With the proliferation in radio communication systems, scarce bandwidth resources and high

cost licenses are getting more common which could limit the access to emergent wireless ap-

plications. There is evidence to state that the perceived under-utilization of the specturm is

generated by the access policy where applications are assigned with fixed frequency bands.

This fact motivates the development of cognitive radio networks’ capability to sense the psec-

trum and access it opportunistically.

According to Mateos et al. (2010), after devising the cooperative approach to the sensing

task of CR networks, the basic expansion model for the spectrum is given below:

Φr(f) =
Ns∑
s=1

gsrΦs(f) =
Ns∑
s=1

gsr

Nb∑
b=1

βbsφb(f),

where Φr(f) denotes the power spectrum density (PSD) at frequency f at the location of the rth

CR, which is generated by the superposition of PSDs Φs(f) from Ns sources. The coefficient
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gsr represents the channel gain which models the average propagation loss between source s

and the CR r. φb(f) represents the rectangular pulses of unit height and the parameter βbs

denotes how much power is emitted by source s in the frequency band spanned by the basis

φb(f).

Furthermore, in the cooperative scenario, Nr sensing CRs collect smoothed periodogram

samples {yrk}Nr
r=1 of the received signal at frequencies {fk}

Nf

k=1. The model is :

yrk = Φr(fk) + ηrk,

where the noise ηrk is modeled as a Gaussian random variable.

By combining these two models, the model used for ADMM and convex optimization is

given below:

yrk =
Ns∑
s=1

gsr

Nb∑
b=1

βbsφb(fk) + ηrk

After rewriting this into matrix form, the following equation can be obtained:

Y = Aβ + η

where

Y =



y1,1

...

y1,Nf

y2,1

...

y2,Nf

...yNr,1

...

yNr,Nf



β =



β1,1

...

βNb,1

β1,2

...

βNb,2

...β1,Ns

...

βNb,Ns



η =



η1,1

...

η1,Nf

η2,1

...

η2,Nf

...ηNr,1

...

ηNr,Nf


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And

A =



g11φ1(f1) . . . g11φb(f1) g21φ1(f1) . . . g21φb(f1) . . . gNs1φb(f1)

g11φ1(f2) . . . g11φb(f2) g21φ1(f2) . . . gNs1φ1(f2) . . . gNs1φb(f2)

. . .

g11φ1(fNf
) . . . g11φb(fNf

) g21φ1(fNf
) . . . gNs1φ1(fNf

) . . . gNs1φb(fNf
)

g12φ1(f1) . . . g12φb(f1) g22φ1(f1) . . . gNs2φ1(f1) . . . gNs2φb(f1)

. . .

g12φ1(fNf
) . . . g12φb(fNf

) g22φ1(fNf
) . . . gNs2φ1(fNf

) . . . gNs2φb(fNf
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g1Nrφ1(f1) . . . g1Nrφb(f1) g2Nrφ1(f1) . . . gNsNrφ1(f1) . . . gNsNrφb(f1)

. . .

g1Nrφ1(fNf
) . . . g1Nrφb(fNf

) g2Nrφ1(fNf
) . . . gNsNrφ1(fNf

) . . . gNsNrφb(fNf
)


Following Mateos et al. (2010), the numerical example is generated by 5 sources and each

source’s PSD Φs(f) corresponds to one ofNb = 9 non-overlapping rectangular pulses φi(fj) =

(i× j) MHz, i = 1, 2, . . . , b, j = 1, 2, . . . , Nf . Samples of the PSD field at Nf = 8 frequencies

are acquired by Nr = 50 CRs. The CRs collaborate to locate the sources on a rectangular grid

of Ns = 121 candidate positions. The gain is selected as gsr = min{1, ( 200
‖xs−xr‖2 )3}. Based on

the definition of these quantities, it would be reasonable to have the following assumption:

• only a few β are nonzero. The band nature of source-PSDs is narrow, and in this way,

could only span a few frequency bands that most of them are zeros. Under this condition,

in the LASSO problem, the penalty matrix D could be set to identity matrix.

• all the elements in β should be nonnegative. According to the definition of β, each

component is the power emitted by source s in the frequency band. In common sense,

the emitting power could only be nonnegative value since it is not reasonable to emit

negative power. Based on this assumption, in the LASSO problem, the matrix C could

be set to be identity matrix and vector d could be a zero vector.
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• xs and xr are the position in the coordinate plane. Based on the introduction of this

dataset, function gsr represents the channel gain modeling the average propagation loss

between the source s and the CR r which is known function of their distance. In this case,

the data could be generated when the positions of those sources are fixed in the plane.

After generating the data of xs and xr randomly and the corresponding periodogram sam-

ples yrk, the objective function could be rewritten in the following form:

min
β

1

2
‖Y − Aβ‖2

2 + λ‖Dβ‖1,

subject to Cβ ≥ d,

where

D = INbNs , C = INbNs and d =



0

0

...

0


.

In this way, the basic expansion model for the spectrum could be transfered into the gen-

eralized LASSO problem with inequality constraint. There is no equality constraint in this

example. The matrix E is then assumed to be zero matrix which can be ignored in this prob-

lem.

Using the proposed ADMM algorithm with slack variables, the tuning parameter selection

plot associated with BIC can be obtained in Figure 7.1. In the tuning parameter selection, the

BIC is defined in (6.1). From Figure 7.1, λ = 1.5 is selected as the best tuning parameter to

estimate the parameter β.

To evaluate the performance of the estimation with the selected λ, we can calculate the

average prediction error (APE) of the fitted model. The full datasets T = {(Ai, Yi), i =

1, 2, . . . , n}, where n = Nr ∗ Nf = 400 in our case, can be divided randomly into cross-

validation training set T − T k and test sets T k, k = 1, 2, 3, 4. The parameters are estimated
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Figure 7.1: Tuning parameter selection with CR data

using the training sets and the prediction errors are calculated using the test sets. The APE is

defined as

APE =
1

4

4∑
k=1

{ 1

nk

∑
i∈Tk

‖Yi − Aiβ̂T−Tk‖2},

where nk is the sample size of test set T k. We set nk = 100 for all k = 1, 2, 3, 4 here. In

conclusion, the APE of the model with linear constraints is 12.02. Remark that by applying

the Extended ADMM with new constraint as introduced in section 3.2, the computational com-

plexity could be reduced while the estimation error willl not vary much.

7.2 National health and nutrition examination survey

The second real data analysis is based on the National Health and Nutrition Examination

Survey: https://www.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.

aspx?BeginYear=2015. Body fatness has been an important psychosocial issue among

humans for a long time, which is difficult to quantify. That is, each individual has his/her own

perception of how fat he/she should be. The Body Mass Index (BMI) is the metric currently
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in use to represent the index of an individual’s fatness which is defined as weight
(height)2

. It also is

widely used as a risk factor for the development of or the prevalence of several health issues.

In addition, it is widely used in determining public health policies. The BMI has been useful

in population-based studies by virtue of its wide acceptance in defining specific categories of

body mass as a health issue. We would like to apply the extended ADMM algorithm to show the

significance of several variables to the metric BMI, in other words, the fatness of an individual.

In this analysis, I used the data from 2011 to 2016 and selected several predictors to ana-

lyze the linear regression with the response BMI. The predictors include: alkaline phosphatase

(x1), total calcium (x2), globulin (x3), glucose (x4), iron (x5), potassium (x6), sodium (x7), total

protein (x8) and uric acid (x9), albumin in urine (x10), creatinine in urine (x11), blood pressure

(x12), age in years of the participant at the time of screening (x13), length of time the participant

has been in the US (x14), total cholesterol (x15), triglyceride (x16). The objective of this analy-

sis is to use the following two methods: extended ADMM with slack variables and distributed

ADMM splitting along n to solve this linear regression problem. In the distributed computing

case, I used the year of examination survey to divide the dataset into 3 pieces: the individuals

that take the examination survey between 2011 - 2012, between 2013 - 2014 and between 2015

- 2016. Using these slices, the parallel computing using ADMM with splitting along n could

be applied to the dataset. There are many existing paper discussing the association between

the predictors and BMI. For example, in Khan et al. (2015), a significant linear relationship

with p-value less than 0.0001 has been found between alkaline phosphatase and BMI, while in

Dos Santos et al. (2005), a significant negative correlation between the calcium intake and BMI

has been analyzed. More details can be found in Madhuvanthi and Lathadevi (2016), Innocent

et al. (2013), Eftekhari et al. (2009), Elfassy et al. (2018), Pimpin et al. (2015), Honggang et al.

(2014), Gerchman et al. (2009), Linderman et al. (2018), Mitchell et al. (2013), Faheem et al.

(2010) and Frazee et al. (2015) for the associations between BMI and other predictors. Based

on the information, the assumed value of matrix C, D, and vectors d are as follows:

D = I18, d = 016, and C is diagonal matrix with entries:

{1,−1,−1, 1,−1,−1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1}
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on the diagonal.

Transfer this linear regression problem to the following optimization problem:

min
β

1

2
‖y −Xβ‖2

2 + λ‖Dβ‖1,

subject to Cβ ≥ d,

where y is the vector of responses in BMI and X is the matrix with the observations of the

predictors. This is a generalized LASSO problem with inequality constraints which can be

solved by using the ADMM algorithms proposed in Chapter 3. After applying the proposed

algorithms in section 3.1 and section 3.3 to this dataset, Figure 7.2 can be obtained.
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Figure 7.2: Tuning parameter selection with NHNES data

In this analysis, the BIC is based on (6.1) and ρ is fixed at 1. From Figure 7.2, we can

find that the best tuning parameter λ for the both approaches should be 10. By selecting the

tuning parameter λ = 10 in both scenarios, the estimated linear regression for BMI and the

other predictors are given as follows:

89



y = 0.010x1 − 0.160x2 + 0.006x3 + 0.125x4 − 0.146x5 + 0.033x6

− 0.002x7 + 0.002x8 + 0.161x9 − 0.069x10 + 0.140x11

+ 0.080x12 + 0.089x13 + 0.033x14 + 0.028x15 + 0.127x16

and

y = 0.009x1 − 0.162x2 + 0.013x3 + 0.123x4 − 0.145x5 + 0.011x6

− 0.002x7 + 0.005x8 + 0.159x9 − 0.069x10 + 0.140x11

+ 0.080x12 + 0.088x13 + 0.033x14 + 0.027x15 + 0.127x16

Based on the estimated linear equations above, the proposed ADMM with slack variables

and ADMM with splitting along n can be demonstrated that most of the parameters are with

the similar coefficients to predict the response except for those with little significance compared

with other predictors. Based on the analysis, we can see that the BMI has positive association

with alkaline phosphatase, globulin, glucose, potassium, total protein, uric acid, creatinine in

urine, blood pressure, age in years of the participant at the time of screening, length of time the

participant has been in the US, total cholesterol and triglyceride. On the other hand, BMI has

negative association with total calcium, iron, sodium and albumin in urine. It is easy to find that

the significance of total calcium, glucose, iron, urine acid,creatinine in urine and triglyceride

are much higher than the other predictors while alkaline phosphatase, globulin, sodium and

total protein has little significance to BMI.
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Chapter 8

Future Work

There are several other scenarios and problems in this research that we expect to accomplish in

the future. First, we expect to apply the extended ADMM algorithms proposed in Chapter 3 to

some other penalized regression models and do simulations with increase n and p to see whether

the proposed algorithms can work on other models as well or is there anything we could revise

to make it work. Specifically, the Huber loss function and the Logistic regression, which is a

popular model in survival analysis and other pharmaceutical area, will be considered and tested

here. Next, we also need to consider the asymptotic behavior of these algorithm. Notice that in

the proof of convergence in Chapter 4, we only showed the case when n and p are fixed with

assumption 4 assumed to be true. we are going to work on the asymptotic case when n and p

both increase to infinity in the same rate, for example, p
n

= 1
2
. We know that several researchers

have work in this area and have showed that some existing algorithm will no longer work in

this scenario. We are wondering if the convergence could still be held when this situation

occurs. Moreover, since we have 5 extended ADMM algorithms proposed in this dissertation,

a package in R needs to be developed which should compile all these algorithms. In fact, in

order to apply the openMPI to run parallel computing, C language is also used and the C code

with distributed computing worked as the source file in R to read. Furthermore, we will come

up with more real examples to show the availability of our proposed algorithms with different

scenarios. Since we didn’t use the extended ADMM with new constraint, distributed ADMM

splitting along p or distributed ADMM splitting along n and p in the real data, we may need

to find some dataset that fits well for each of them to do analysis. Moreover, the BMI example

didn’t show a signficant variable selection which is common in generalied LASSO problem.
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Another dataset is needed to illustrate of variable selection of the proposed algorithms. Last but

not least, in the proof of convergence in Chapter 4, we applied the sufficient condition in Chen

et al. (2016). We would like to do one more step to find the sufficient and necessary condition

of the convergence of extended ADMM so that we may not need to have the strong assumption

4 in the proof of distributed ADMM splitting along p and distributed ADMM splitting along

n and p. If the sufficient and necessary condition can be found, those two algorithms may

achieve convergence naturally without any further assumption which can also help in the proof

of convergence when we apply the ADMM algorithms to other penalized models, such as

logistic regression.
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